Communication Complexity of Learning Discrete Distributions

Krzysztof Onak

IBM T.J. Watson Research Center

Joint work with Ilias Diakonikolas, Elena Grigorescu, and Abhiram Natarajan.

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution ${\cal D}$

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution ${\cal D}$

Goal:

Learn the distribution or test a property or estimate a parameter

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution $\ensuremath{\mathcal{D}}$

Goal:

Learn the distribution or test a property or estimate a parameter

- Small total variation distance error acceptable
- Traditional focus: sample complexity

Learning Discrete Distributions

 $\mathcal{D} =$ probability distribution on $\{1, \dots, n\}$ Input: Independent samples from \mathcal{D}

Goal: Output a distribution \mathcal{D}' such that $\|\mathcal{D} - \mathcal{D}'\|_1 < \epsilon$

Learning Discrete Distributions

 $\mathcal{D} =$ probability distribution on $\{1, \dots, n\}$ Input: Independent samples from \mathcal{D}

Goal:

Output a distribution \mathcal{D}' such that $\|\mathcal{D} - \mathcal{D}'\|_1 < \epsilon$

Sample complexity: $\Theta(n/\epsilon^2)$

Communication Complexity Distributed data: samples held by different players Example: Samples in different data centers

Communication Complexity Distributed data: samples held by different players Example: Samples in different data centers

How much do players have to communicate to solve the problem? Is sublinear communication possible?

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions

"Survey" Complexity

This talk will focus on the simplest setting:

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

"Survey" Complexity

This talk will focus on the simplest setting:

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

- Each sample is $\Theta(\log n)$ bits
- Can average communication be made $o(\log n)$?

Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

See Mark Braverman's talk tomorrow

Outline

1 $O(n/\epsilon^2)$ Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example

Outline

1 $O(n/\epsilon^2)$ Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions

Upper Bound Review

Solution: D' = empirical distribution of $O(n/\epsilon^2)$ samples

Upper Bound Review

Solution: \mathcal{D}' = empirical distribution of $O(n/\epsilon^2)$ samples

Why this works:

• For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}' within $\epsilon/2$ with probability $1 - 2^{-2n}$

Upper Bound Review

Solution: \mathcal{D}' = empirical distribution of $O(n/\epsilon^2)$ samples

Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}' within $\epsilon/2$ with probability $1 2^{-2n}$
- Union bound: $\|\mathcal{D} \mathcal{D}'\|_1 \leq \epsilon$ with probability 1 o(1)

Fact: Hoeffding's inequality is optimal

- *c*-biased coin, determine direction of the bias
- $\Omega(\epsilon^{-2})$ coin tosses needed

Fact: Hoeffding's inequality is optimal

- *c*-biased coin, determine direction of the bias
- $\Omega(\epsilon^{-2})$ coin tosses needed

Construction:

Fact: Hoeffding's inequality is optimal

- *c*-biased coin, determine direction of the bias
- $\Omega(\epsilon^{-2})$ coin tosses needed

Construction:

• Each pair randomly biased by 10ϵ

Fact: Hoeffding's inequality is optimal

- *c*-biased coin, determine direction of the bias
- Ω(ε⁻²) coin tosses needed

Construction:

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than ⁹/₁₀ pairs (via averaging/Markov's bound)

Fact: Hoeffding's inequality is optimal

- *c*-biased coin, determine direction of the bias
- Ω(ε⁻²) coin tosses needed

Construction:

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than ⁹/₁₀ pairs (via averaging/Markov's bound)
- This requires $\Omega(n/\epsilon^2)$ samples

Outline

1 $O(n/\epsilon^2)$ Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^2}\log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^2}\log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

(Can assume at most $O(n/\epsilon^2 \log n)$ players in the proof)

Hard Distribution

Reuse the hard distribution for sampling:

Hard Distribution

Reuse the hard distribution for sampling:

Can assume the protocol is deterministic:

- Slight loss in the probability of success
- Expected communication goes up by constant factor

• Assume $o(n\epsilon^{-2} \log n)$ communication protocol

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i
 (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$
- The original protocol correct only on $\frac{1}{2} + o(1)$ fraction of δ_i 's most of the time

- Assume $o(n\epsilon^{-2} \log n)$ communication protocol
- For random *i*, show that:
 - Messages reveal very little about δ_i
 (even if the referee knows all other δ_i's)
 - The referee can predict δ_i with probability $\frac{1}{2} + o(1)$
- The original protocol correct only on ¹/₂ + o(1) fraction of δ_i's most of the time

CONTRADICTION!!!

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Modify protocol for each pair 2j - 1 and 2j:

- Before: x sent for 2j 1 and y sent for 2j
- After: send xy for 2j 1 and yx for 2j

Result:

- Communication complexity only doubles.
- This partitions pairs. Each message reveals bias on a specific subset of pairs.

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

1
$$|xy| > \frac{\log n}{100}$$

- Happens for $o(n/\epsilon^2)$ fraction of players
- · Can assume the message reveals the sample
- $I(\text{message}; \delta_i) \leq I(\text{sample}; \delta_i) = O(\epsilon^2/n)$

Messages of Single Player

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

- 1 |xy| > log n/100
 2 |xy| ≤ log n/100 & ≤√n pairs with these messages
 Random *i*: happens with probability n^{0.01}√n/n
 Can assume the message reveals the sample
 - $I(\text{message}; \delta_i) \leq I(\text{sample}; \delta_i) = O(\epsilon^2/n)$

Messages of Single Player

Three cases for a pair 2i - 1 and 2iand corresponding messages *xy* and *yx*:

 $|xy| > \frac{\log n}{100}$ $|xy| \le \frac{\log n}{100}$ & $\le \sqrt{n}$ pairs with these messages $|xy| \le \frac{\log n}{100}$ & $>\sqrt{n}$ pairs with these messages • Can happen always

- δ_i has little impact on probabilities of xy and yx
- $I(\text{sample}; \delta_i) = O(\epsilon^2 / (n \cdot \# \text{pairs})) = O(\epsilon^2 / n^{1.5})$

Total Information about δ_i

 M_j = message of the *j*-th player $M = (M_1, M_2, \dots, M_p)$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{j}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

And
$$H(\delta_i|M) = H(\delta_i) - I(\delta_i; M) = 1 - o(1)$$

For all but o(1) fraction of *i*'s:

$$\sum_{j} I(\delta_{i}; M_{j}) = o\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) + O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)$$
$$+ O\left(\frac{n\log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right) = o(1)$$

Then $I(\delta_i; M) = o(1)$:

- Messages M_i independent once δ_i is fixed
- This implies that $I(\delta_i; M) \leq \sum_j I(\delta_i, M_j)$

And
$$H(\delta_i|M) = H(\delta_i) - I(\delta_i; M) = 1 - o(1)$$

Algorithm correct with probability $\frac{1}{2} + o(1)$

Outline

1 $O(n/\epsilon^2)$ Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions

Uniformity Testing

Problem:

• Distinguish $\mathcal{D} = \mathcal{U}$ vs. $\|\mathcal{D} - \mathcal{U}\|_1 \ge \epsilon$

Uniformity Testing

Problem:

- Distinguish $\mathcal{D} = \mathcal{U}$ vs. $\|\mathcal{D} \mathcal{U}\|_1 \ge \epsilon$
- Sample complexity: $\Theta\left(\sqrt{n}/\epsilon^2\right)$

Uniformity Testing

Problem:

- Distinguish $\mathcal{D} = \mathcal{U}$ vs. $\|\mathcal{D} \mathcal{U}\|_1 \ge \epsilon$
- Sample complexity: $\Theta\left(\sqrt{n}/\epsilon^2\right)$

Communication complexity bound:

- Assume lengths of all messages $o(\log n)$
- Methods presented here imply:
 - Referee likely learns $n^{-\Omega(1)}$ -fraction of samples
 - Other messages provide little information
 - Not enough to distinguish hard instances

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

Longer goals

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

Longer goals

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Questions?