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Distribution Learning and Testing
Input: Stream of independent samples

from an unknown distribution D

x1,x2,x3,x4, . . .

Goal:
Learn the distribution
or test a property

or estimate a parameter

• Small total variation distance error acceptable
• Traditional focus: sample complexity

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions 2 / 20



Distribution Learning and Testing
Input: Stream of independent samples

from an unknown distribution D

x1,x2,x3,x4, . . .

Goal:
Learn the distribution
or test a property

or estimate a parameter

• Small total variation distance error acceptable
• Traditional focus: sample complexity

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions 2 / 20



Distribution Learning and Testing
Input: Stream of independent samples

from an unknown distribution D

x1,x2,x3,x4, . . .

Goal:
Learn the distribution
or test a property

or estimate a parameter

• Small total variation distance error acceptable
• Traditional focus: sample complexity

Krzysztof Onak (IBM Research) Communication Complexity of Learning Discrete Distributions 2 / 20



Learning Discrete Distributions
D = probability distribution on {1, . . . ,n}
Input: Independent samples from D

x1,x2,x3,x4, . . .

Goal:

Output a distribution D′ such that ‖D − D′‖1 < ε

Sample complexity: Θ(n/ε2)
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Communication Complexity
Distributed data: samples held by different players

Example: Samples in different data centers

How much do players have to communicate
to solve the problem?

Is sublinear communication possible?
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“Survey” Complexity
This talk will focus on the simplest setting:
• Each player has one sample

and sends a single message to a referee
• The referee outputs solution

output

sample

sample

sample

sample

Player 2

Player 3

Player p

Referee

Player 1

• Each sample is Θ(log n) bits
• Can average communication be made o(log n)?
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Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14,
SSZ14, DJWZ14, LSLT15, BGMNW15

• Both upper and lower bounds.
• Usually more continuous problems.
• Sample problem: estimating the mean of a Gaussian

distribution.

See Mark Braverman’s talk tomorrow
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Outline

1 O(n/ε2) Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example
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Upper Bound Review

Solution: D′ = empirical distribution of O(n/ε2) samples

Why this works:

• For every subset of {1, . . . ,n} the probabilities under
D and D′ within ε/2 with probability 1− 2−2n

• Union bound: ‖D − D′‖1 ≤ ε with probability 1− o(1)
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Lower Bound Review
Fact: Hoeffding’s inequality is optimal
• ε-biased coin, determine direction of the bias
• Ω(ε−2) coin tosses needed

Construction:

1 2 3 4 5 6 7 8

δ1 = 1 δ2 = −1 δ3 = 1 δ4 = 1
10δ1ε

−10δ1ε

• Each pair randomly biased by 10ε
• Need to predict bias of more than 9

10 pairs
(via averaging/Markov’s bound)

• This requires Ω(n/ε2) samples
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Outline

1 O(n/ε2) Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example
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Our Claim

No protocol with o
(

n
ε2

log n
)

communication on average
that succeeds learning the distribution

with probability 99/100.

(Can assume at most O
(
n/ε2 log n

)
players in the proof)
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Hard Distribution

Reuse the hard distribution for sampling:

1 2 3 4 5 6 7 8

δ1 = 1 δ2 = −1 δ3 = 1 δ4 = 1
10δ1ε

−10δ1ε

Can assume the protocol is deterministic:
• Slight loss in the probability of success
• Expected communication goes up by constant factor
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The Proof Plan

• Assume o(nε−2 log n) communication protocol

• For random i , show that:
• Messages reveal very little about δi

(even if the referee knows all other δi ’s)
• The referee can predict δi with probability 1

2 + o(1)

• The original protocol correct only on 1
2 + o(1) fraction

of δi ’s most of the time

CONTRADICTION!!!
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Messages of Single Player
Modify protocol for each pair 2j − 1 and 2j :
• Before: x sent for 2j − 1 and y sent for 2j
• After: send xy for 2j − 1 and yx for 2j

1

2

3

4

5

6

7

8

x

y

Result:
• Communication complexity only doubles.
• This partitions pairs. Each message reveals bias on a

specific subset of pairs.
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Messages of Single Player

Three cases for a pair 2i − 1 and 2i
and corresponding messages xy and yx :

1 |xy | > log n
100

2 |xy | ≤ log n
100 & ≤

√
n pairs with these messages

3 |xy | ≤ log n
100 & >

√
n pairs with these messages

• Can happen always
• δi has little impact on probabilities of xy and yx
• I(sample; δi) = O(ε2/(n · #pairs)) = O(ε2/n1.5)
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Total Information about δi
Mj = message of the j-th player M = (M1,M2, . . . ,Mp)

For all but o(1) fraction of i ’s:

∑
j

I(δi ; Mj) = o
( n
ε2

)
·O
(
ε2

n

)
+ O

(
n0.52

ε2

)
·O
(
ε2

n

)

+ O
(

n log n
ε2

)
·O
(
ε2

n1.5

)
= o(1)

Then I(δi ; M) = o(1):
• Messages Mj independent once δi is fixed
• This implies that I(δi ; M) ≤

∑
j I(δi ,Mj)

And H(δi |M) = H(δi)− I(δi ; M) = 1− o(1)

Algorithm correct with probability 1
2 + o(1)
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Outline

1 O(n/ε2) Sample Complexity Review

2 Communication Complexity Lower Bound

3 Quick Distribution Testing Example
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Uniformity Testing

Problem:
• Distinguish D = U vs. ‖D − U‖1 ≥ ε

• Sample complexity: Θ
(√

n/ε2
)

Communication complexity bound:
• Assume lengths of all messages o(log n)

• Methods presented here imply:
• Referee likely learns n−Ω(1)-fraction of samples
• Other messages provide little information
• Not enough to distinguish hard instances
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This talk:
• Communication lower bounds
• Players have to essentially transmit their samples

Longer goals
• Reinterpret known distribution testing and learning

results in this framework
• Design non-trivial protocols with sublinear amount of

communication

Questions?
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