Communication Complexity of Learning Discrete Distributions

Krzysztof Onak

IBM T.J. Watson Research Center
Joint work with Ilias Diakonikolas, Elena Grigorescu, and Abhiram Natarajan.

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution \mathcal{D}

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution \mathcal{D}

Goal:

> Learn the distribution
> or test a property
> or estimate a parameter

Distribution Learning and Testing

Input: Stream of independent samples from an unknown distribution \mathcal{D}

Goal:
Learn the distribution
or test a property
or estimate a parameter

- Small total variation distance error acceptable
- Traditional focus: sample complexity

Learning Discrete Distributions

$\mathcal{D}=$ probability distribution on $\{1, \ldots, n\}$ Input: Independent samples from \mathcal{D}

Goal:
Output a distribution \mathcal{D}^{\prime} such that $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1}<\epsilon$

Learning Discrete Distributions

$\mathcal{D}=$ probability distribution on $\{1, \ldots, n\}$
Input: Independent samples from \mathcal{D}

Goal:
Output a distribution \mathcal{D}^{\prime} such that $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1}<\epsilon$
Sample complexity: $\Theta\left(n / \epsilon^{2}\right)$

Communication Complexity

Distributed data: samples held by different players
Example: Samples in different data centers

Communication Complexity

Distributed data: samples held by different players
Example: Samples in different data centers

How much do players have to communicate to solve the problem?
Is sublinear communication possible?

"Survey" Complexity

This talk will focus on the simplest setting:

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

"Survey" Complexity

This talk will focus on the simplest setting:

- Each player has one sample and sends a single message to a referee
- The referee outputs solution

- Each sample is $\Theta(\log n)$ bits
- Can average communication be made $o(\log n)$?

Related Work

A lot of recent interest in communication-efficient learning:

DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

Related Work

A lot of recent interest in communication-efficient learning:

> DAW12, ZDW13, ZX15, GMN14, KVW14, LBKW14, SSZ14, DJWZ14, LSLT15, BGMNW15

- Both upper and lower bounds.
- Usually more continuous problems.
- Sample problem: estimating the mean of a Gaussian distribution.

See Mark Braverman's talk tomorrow

Outline

(1) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

(2) Communication Complexity Lower Bound
(3) Quick Distribution Testing Example

Outline

(1) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

(2) Communication Complexity Lower Bound

(3) Quick Distribution Testing Example

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples
Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}^{\prime} within $\epsilon / 2$ with probability $1-2^{-2 n}$

Upper Bound Review

Solution: $\mathcal{D}^{\prime}=$ empirical distribution of $O\left(n / \epsilon^{2}\right)$ samples
Why this works:

- For every subset of $\{1, \ldots, n\}$ the probabilities under \mathcal{D} and \mathcal{D}^{\prime} within $\epsilon / 2$ with probability $1-2^{-2 n}$
- Union bound: $\left\|\mathcal{D}-\mathcal{D}^{\prime}\right\|_{1} \leq \epsilon$ with probability $1-o(1)$

Lower Bound Review

Fact: Hoeffding's inequality is optimal

- ϵ-biased coin, determine direction of the bias
- $\Omega\left(\epsilon^{-2}\right)$ coin tosses needed

Lower Bound Review

Fact: Hoeffding's inequality is optimal

- ϵ-biased coin, determine direction of the bias
- $\Omega\left(\epsilon^{-2}\right)$ coin tosses needed

Construction:

$$
\delta_{1}=1 \quad \delta_{2}=-1 \quad \delta_{3}=1 \quad \delta_{4}=1
$$

Lower Bound Review

Fact: Hoeffding's inequality is optimal

- ϵ-biased coin, determine direction of the bias
- $\Omega\left(\epsilon^{-2}\right)$ coin tosses needed

Construction:

$$
\delta_{1}=1 \quad \delta_{2}=-1 \quad \delta_{3}=1 \quad \delta_{4}=1
$$

- Each pair randomly biased by 10ϵ

Lower Bound Review

Fact: Hoeffding's inequality is optimal

- ϵ-biased coin, determine direction of the bias
- $\Omega\left(\epsilon^{-2}\right)$ coin tosses needed

Construction:

$$
\delta_{1}=1 \quad \delta_{2}=-1 \quad \delta_{3}=1 \quad \delta_{4}=1
$$

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than $\frac{9}{10}$ pairs (via averaging/Markov's bound)

Lower Bound Review

Fact: Hoeffding's inequality is optimal

- ϵ-biased coin, determine direction of the bias
- $\Omega\left(\epsilon^{-2}\right)$ coin tosses needed

Construction:

$$
\delta_{1}=1 \quad \delta_{2}=-1 \quad \delta_{3}=1 \quad \delta_{4}=1
$$

- Each pair randomly biased by 10ϵ
- Need to predict bias of more than $\frac{9}{10}$ pairs (via averaging/Markov's bound)
- This requires $\Omega\left(n / \epsilon^{2}\right)$ samples

Outline

(1) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

(2) Communication Complexity Lower Bound

(3) Quick Distribution Testing Example

Our Claim

> No protocol with o $\left(\frac{n}{\epsilon^{2}} \log n\right)$ communication on average that succeeds learning the distribution with probability $99 / 100$.

Our Claim

No protocol with $o\left(\frac{n}{\epsilon^{2}} \log n\right)$ communication on average that succeeds learning the distribution with probability 99/100.

(Can assume at most $O\left(n / \epsilon^{2} \log n\right)$ players in the proof)

Hard Distribution

Reuse the hard distribution for sampling:

Hard Distribution

Reuse the hard distribution for sampling:

Can assume the protocol is deterministic:

- Slight loss in the probability of success
- Expected communication goes up by constant factor

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ;'s)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ 's)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$
- The original protocol correct only on $\frac{1}{2}+o(1)$ fraction of δ_{i} 's most of the time

The Proof Plan

- Assume $o\left(n \epsilon^{-2} \log n\right)$ communication protocol
- For random i, show that:
- Messages reveal very little about δ_{i} (even if the referee knows all other δ;'s)
- The referee can predict δ_{i} with probability $\frac{1}{2}+o(1)$
- The original protocol correct only on $\frac{1}{2}+o(1)$ fraction of δ_{i} 's most of the time

CONTRADICTION!!!

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Messages of Single Player

Modify protocol for each pair $2 j-1$ and $2 j$:

- Before: x sent for $2 j-1$ and y sent for $2 j$
- After: send $x y$ for $2 j-1$ and $y x$ for $2 j$

Result:

- Communication complexity only doubles.
- This partitions pairs. Each message reveals bias on a specific subset of pairs.

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$

- Happens for $o\left(n / \epsilon^{2}\right)$ fraction of players
- Can assume the message reveals the sample
- I(message; $\left.\delta_{i}\right) \leq I\left(\right.$ sample; $\left.\delta_{i}\right)=O\left(\epsilon^{2} / n\right)$

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$
(2) $|x y| \leq \frac{\log n}{100} \quad \& \leq \sqrt{n}$ pairs with these messages

- Random i : happens with probability $\frac{\eta^{0.01} \cdot \sqrt{n}}{n}$
- Can assume the message reveals the sample
- $I\left(\right.$ message $\left.; \delta_{i}\right) \leq I\left(\right.$ sample; $\left.\delta_{i}\right)=O\left(\epsilon^{2} / n\right)$

Messages of Single Player

Three cases for a pair $2 i-1$ and $2 i$ and corresponding messages $x y$ and $y x$:
(1) $|x y|>\frac{\log n}{100}$
(2 $|x y| \leq \frac{\log n}{100} \quad \& \leq \sqrt{n}$ pairs with these messages
(3) $|x y| \leq \frac{\log n}{100} \quad \& \quad>\sqrt{n}$ pairs with these messages

- Can happen always
- δ_{i} has little impact on probabilities of $x y$ and $y x$
- $I\left(\right.$ sample $\left.; \delta_{i}\right)=O\left(\epsilon^{2} /(n \cdot \#\right.$ pairs $\left.)\right)=O\left(\epsilon^{2} / n^{1.5}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but $o(1)$ fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but o (1) fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=o(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but o (1) fraction of i 's:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=O(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

And $H\left(\delta_{i} \mid M\right)=H\left(\delta_{i}\right)-I\left(\delta_{i} ; M\right)=1-o(1)$

Total Information about δ_{i}

$M_{j}=$ message of the j-th player $\quad M=\left(M_{1}, M_{2}, \ldots, M_{p}\right)$
For all but $o(1)$ fraction of $i \prime s$:

$$
\begin{aligned}
\sum_{j} I\left(\delta_{i} ; M_{j}\right) & =O\left(\frac{n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right)+O\left(\frac{n^{0.52}}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n}\right) \\
& +O\left(\frac{n \log n}{\epsilon^{2}}\right) \cdot O\left(\frac{\epsilon^{2}}{n^{1.5}}\right)=O(1)
\end{aligned}
$$

Then $I\left(\delta_{i} ; M\right)=O(1)$:

- Messages M_{j} independent once δ_{i} is fixed
- This implies that $I\left(\delta_{i} ; M\right) \leq \sum_{j} I\left(\delta_{i}, M_{j}\right)$

And $H\left(\delta_{i} \mid M\right)=H\left(\delta_{i}\right)-I\left(\delta_{i} ; M\right)=1-o(1)$
Algorithm correct with probability $\frac{1}{2}+O(1)$

Outline

(1) $O\left(n / \epsilon^{2}\right)$ Sample Complexity Review

(2) Communication Complexity Lower Bound

(3) Quick Distribution Testing Example

Uniformity Testing

Problem:

- Distinguish $\mathcal{D}=\mathcal{U}$ vs. $\|\mathcal{D}-\mathcal{U}\|_{1} \geq \epsilon$

Uniformity Testing

Problem:

- Distinguish $\mathcal{D}=\mathcal{U}$ vs. $\|\mathcal{D}-\mathcal{U}\|_{1} \geq \epsilon$
- Sample complexity: $\Theta\left(\sqrt{n} / \epsilon^{2}\right)$

Uniformity Testing

Problem:

- Distinguish $\mathcal{D}=\mathcal{U}$ vs. $\|\mathcal{D}-\mathcal{U}\|_{1} \geq \epsilon$
- Sample complexity: $\Theta\left(\sqrt{n} / \epsilon^{2}\right)$

Communication complexity bound:

- Assume lengths of all messages $o(\log n)$
- Methods presented here imply:
- Referee likely learns $n^{-\Omega(1)}$-fraction of samples
- Other messages provide little information
- Not enough to distinguish hard instances

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

Longer goals

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

This talk:

- Communication lower bounds
- Players have to essentially transmit their samples

Longer goals

- Reinterpret known distribution testing and learning results in this framework
- Design non-trivial protocols with sublinear amount of communication

Questions?

