# Parallel Peeling Algorithms 

Justin Thaler, Yahoo Labs<br>Joint Work with:

Michael Mitzenmacher, Harvard University
Jiayang Jiang

## The Peeling Paradigm

- Many important algorithms for a wide variety of problems can be modeled in the same way.
- Start with a (random) hypergraph G.
- While there exists a node v of degree less than k :
- Remove v and all incident edges.
- The remaining graph is called the k-core of G.
- $\mathrm{k}=2$ in most applications.
- Typically, the algorithm "succeeds" if the the k-core is empty.
- To ensure "success", data structure should be designed large enough so that the k -core of G is empty w.h.p.
- Typically yields simple, greedy algorithms running in linear time.


## The peeling process when $k=2$



## The peeling process when $k=2$



## The peeling process when $k=2$



## The peeling process when $k=2$

## The peeling process when $\mathrm{k}=2$

## Example Algorithms

## Example 1: Sparse Recovery Algorithms

- Consider data streams that insert and delete a lot of items.
- Flows through a router, people entering/leaving a building.
- Sparse Recovery problem: list all items with non-zero frequency.
- Want listing not at all times, but at "reasonable" or "off-peak" times, when working set size is bounded.
- If we do M insertions, then M-N deletions, and want a list at the end, we need to list N items.
- Data structure size should be proportional to N, not to M!
- Proportional to size you want to be able to list, not number of items your system has to handle.
- Central primitive used in more complicated streaming algorithms.
- E.g. $\mathrm{L}_{0}$ sampling, which is in turn used to solve problems on dynamic graph streams (see previous talk).


## Example 1: Sparse Recovery Algorithms

- For simplicity, assume that when listing occurs, no item has frequency more than 1.


## Example 1: Sparse Recovery Algorithms

- Sparse Recovery Algorithm: Invertible Bloom Lookup Tables (IBLTs) [Goodrich, Mitzenmacher]


Each stream item hashed to r cells (using r different hash functions)
$\operatorname{Insert}(\mathrm{x})$ : For each of the j cells that x is hashed to:
Add key to KeySum
Increment Count
Delete( x ): For each of the j cells x is hashed to:
Subtract key from keysum
Decrement Count

## Listing Algorithm: Peeling

- Call a cell "pure" if its count equals 1 .
- While there exists a pure cell:
- Output $\mathrm{x}=\mathrm{keySum}$ of the cell.
- Call Delete(x) on the IBLT.


## Listing Algorithm: Peeling

- Call a cell "pure" if its count equals 1.
- While there exists a pure cell:
- Output $\mathrm{x}=\mathrm{keySum}$ of the cell.
- Call Delete(x) on the IBLT.
- To handle frequencies that are larger than 1 , add a checksum field to each cell (details omitted).


## Listing Algorithm: Peeling

- Call a cell "pure" if its count equals 1.
- While there exists a pure cell:
- Output $\mathrm{x}=\mathrm{keySum}$ of the cell.
- Call Delete(x) on the IBLT.
- To handle frequencies that are larger than 1 , add a checksum field to each cell (details omitted).
- Listing $\Longleftrightarrow$ peeling to 2-core on the hypergraph G where:
- Cells $\Longleftrightarrow$ vertices of G.
- Items in IBLT $\Longleftrightarrow$ hyperedges of G.
- G is r-uniform (each edge has $r$ vertices, one for each cell the item is hashed to).


## How Many Cells Does an IBLT Need to Guarantee Successful Listing?

- Consider a random r-uniform hypergraph G with n nodes and $\mathrm{m}={ }_{\mathrm{c}}{ }^{*} \mathrm{n}$ edges.
- i.e., each edge has r vertices, chosen uniformly at random from [n] without repetition.
- Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
- For some constant $\mathrm{c}_{\mathrm{k}, \mathrm{r}}$, when $\mathrm{m}<\mathrm{c}_{\mathrm{k}, \mathrm{r}} \mathrm{n}$, the k -core is empty with probability 1-o(1).
- When $\mathrm{m}>\mathrm{c}_{\mathrm{k}, \mathrm{r}} \mathrm{n}$, the k -core of G is non-empty with probability $1-\mathrm{o}(1)$.
- Implication: to successfully list a set of size M with probability 1-o(1), the IBLT needs roughly $\mathrm{M} / \mathrm{c}_{\mathrm{k}, \mathrm{r}}$ cells.
- E.g. $\mathrm{c}_{2,3} \approx 0.818, \mathrm{c}_{2,4} \approx 0.772, \mathrm{c}_{3,3} \approx 1.553$.


## How Many Cells Does an IBLT Need to Guarantee Successful Listing?

- Consider a random r-uniform hypergraph G with n nodes and $\mathrm{m}={ }_{\mathrm{c}}{ }^{*} \mathrm{n}$ edges.
- i.e., each edge has r vertices, chosen uniformly at random from [n] without repetition.
- Known fact: Appearance of a non-empty k-core obeys a sharp threshold.
- For some constant $\mathrm{c}_{\mathrm{k}, \mathrm{r}}$, when $\mathrm{m}<\mathrm{c}_{\mathrm{k}, \mathrm{r}} \mathrm{n}$, the k -core is empty with probability 1-o(1).
- When $\mathrm{m}>\mathrm{c}_{\mathrm{k}, \mathrm{r}} \mathrm{n}$, the k -core of G is non-empty with probability $1-\mathrm{o}(1)$.
- Implication: to successfully list a set of size M with probability 1-o(1), the IBLT needs roughly $\mathrm{M} / \mathrm{c}_{\mathrm{k}, \mathrm{r}}$ cells.
- E.g. $\mathrm{c}_{2,3} \approx 0.818, \mathrm{c}_{2,4} \approx 0.772, \mathrm{c}_{3,3} \approx 1.553$.
- In general:

$$
c_{k, r}^{*}=\min _{x>0} \frac{x}{r\left(1-e^{-x} \sum_{j=0}^{k-2} \frac{x^{j}}{j!}\right)^{r-1}}
$$

## Other Examples of Peeling Algorithms

- Low-Density Parity Check Codes for Erasure Channel.
- [Luby, Mitzenmacher, Shokrollah, Spielman]
- Biff codes (directly use IBLTs).
- [Mitzenmacher and Varghese]
- k-wise independent hash families with $\mathrm{O}(1)$ evaluation time.
- [Siegel]
- Sparse FFT algorithms.
- [Hassanieh et al.]
- Cuckoo hashing.
- [Pagh and Rodler]
- Pure literal rule for computing satisfying assignments of random CNFs.
- [Franco] [Mitzenmacher] [Molloy] [many others].


## Parallel Peeling Algorithms

## Our Goal: Parallelize These Peeling Algorithms

- Recall: the aforementioned algorithms are equivalent to peeling a random hypergraph G to its k -core.
- There is a brain dead way to parallelize the peeling process.
- For each node $v$ in parallel:
- Check if v has degree less than k .
- If so, remove v and its incident hyperedges.
- Key question: how many rounds of peeling are required to find the k-core?
- Algorithm is simple, analysis is tricky.


## Main Result

- Two behaviors:
- Parallel peeling completes in $\mathrm{O}(\log \log n)$ rounds if the edge density c is "below the threshold" $\mathrm{c}_{\mathrm{k}, \mathrm{r}}$.
- Parallel peeling requires $\Omega(\log n)$ rounds if the edge density c is "above the threshold" $\mathrm{c}_{\mathrm{k}, \mathrm{r}}$.
- This is great!
- Most peeling uses the goal is to be below the threshold.
- So "nature" is helping us by making parallelization fast.
- Implies poly $(\log \log n)$ time, $O(n$ poly $(\log \log n))$ work, parallel algorithms for listing elements in an IBLT, decoding LDPC codes, etc.


## Precise Upper Bound

Theorem 1. Let $k, r \geq 2$ with $k+r \geq 5$, and let c be a constant. With probability $1-o(1)$, the parallel peeling process for the $k$-core in a random hypergraph $G_{n, c n}^{r}$ with edge density $c$ and $r$-ary edges terminates after $\frac{1}{\log ((k-1)(r-1))} \log \log n+O(1)$ rounds when $c<c_{k, r}^{*}$.

Theorem 2. Let $k, r \geq 2$ with $k+r \geq 5$, and let $c$ be a constant. With probability $1-o(1)$, the parallel peeling process for the $k$-core in a random hypergraph $G_{n, c n}^{r}$ with edge density $c$ and $r$-ary edges requires $\frac{1}{\log ((k-1)(r-1))} \log \log n-O(1)$ rounds to terminate when $c<c_{k, r}^{*}$.

Summary: The right factor in front of the $\log \log \mathrm{n}$ is $1 /(\log (k-1)(r-1))$ (tight up to an additive constant).

## Lower Bound

Theorem 3. Let $r \geq 3$ and $k \geq 2$. With probability $1-o(1)$, the peeling process for the $k$-core in $G_{n, c n}^{r}$ terminates after $\Omega(\log n)$ rounds when $c>c_{k, r}^{*}$,

Summary: $\Omega(\log n)$ lower bound matches an earlier $O(\log n)$ upper bound due to [Achlioptas and Molloy, 2013].

## Proof Sketch for Upper Bound

- Let $\lambda_{i}$ denote the probability a given vertex $v$ survives $i$ rounds of peeling. - Claim: $\lambda_{i+1} \leq\left(C \lambda_{i}\right)^{(k-1)(r-1)}$ for some constant $C$.
- Suggests $\lambda_{i} \ll 1 / n$ after about $1 /((k-1)(r-1)) * \log \log n$ rounds.
- A related argument shows that $\lambda_{i} \leq 1 /(2 C)$ after $O(1)$ rounds, and after that point the claim implies that $\lambda_{i}$ falls doubly-exponentially quickly.


## Proof Sketch for Upper Bound

- Let $\lambda_{i}$ denote the probability a given vertex $v$ survives $i$ rounds of peeling. - Claim: $\lambda_{i+1} \leq\left(C \lambda_{i}\right)^{(k-1)(r-1)}$ for some constant $C$.
- Very crude sketch of the Claim's plausibility:
- Node $v$ survives round $i+1$ only if it has (at least) $k$ incident edges $e_{1} \ldots e_{k}$ that survive round $i$.
- Fix a $k$-tuple of edges $e_{1} \ldots e_{k}$ incident to $v$.
- Assume no node other than $v$ appears in more than one of these edges.
- Then there are $k(r-1)$ distinct nodes other than $v$ appearing in these edges.
- The edges all survive round $i$ only if all $k(r-1)$ of these nodes survive round $i$.
- Let's pretend that the survival of these nodes are independent events.
- Then the probability all nodes survive round $i$ is roughly $\lambda_{i}^{k(r-1)}$.
- Finally, union bound over all $k$-tuples of edges incident to $v$.


## Simulation Results

|  | $c=0.7$ |  | $c=0.75$ |  | $c=0.8$ |  | $c=0.85$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | Failed | Rounds | Failed | Rounds | Failed | Rounds | Failed | Rounds |
| 10000 | 0 | 12.504 | 0 | 23.352 | 1000 | 17.037 | 1000 | 10.773 |
| 20000 | 0 | 12.594 | 0 | 23.433 | 1000 | 19.028 | 1000 | 11.928 |
| 40000 | 0 | 12.791 | 0 | 23.343 | 1000 | 20.961 | 1000 | 12.992 |
| 80000 | 0 | 12.939 | 0 | 23.372 | 1000 | 22.959 | 1000 | 14.104 |
| 160000 | 0 | 12.983 | 0 | 23.421 | 1000 | 25.066 | 1000 | 15.005 |
| 320000 | 0 | 13.000 | 0 | 23.491 | 1000 | 27.089 | 1000 | 16.305 |
| 640000 | 0 | 13.000 | 0 | 23.564 | 1000 | 29.281 | 1000 | 17.334 |
| 1280000 | 0 | 13.000 | 0 | 23.716 | 1000 | 31.037 | 1000 | 18.499 |
| 2560000 | 0 | 13.000 | 0 | 23.840 | 1000 | 33.172 | 1000 | 19.570 |

- Results from simulations of parallel peeling process on random 4-uniform hypergraphs with $n$ nodes and $c^{*} n$ edges using $k=2$.
- Averaged over 1000 trials.
- Recall that $\mathrm{c}_{2,4} \approx 0.772$.


## Refined Result: Mind the Gap

THEOREM 7.1. Let $v=\left|c_{k, r}^{*}-c\right|$ for constant $c$ with $c<c_{k, r}$. With probability $1-o(1)$, peeling in $G_{n, c n}^{r}$ requires $\Theta(\sqrt{1 / v})+$ $\frac{1}{\log ((k-1)(r-1))} \log \log n$ rounds when $c$ is below the threshold density $c_{k, r}^{*}$.

Summary: below the threshold, the additive term is $\Theta(1 / \sqrt{\mid \text { gap } \mid})$.
This can be more important than the $\log \log n$ term if the edge density is close to the threshold!

## Refined Simulations: Mind the Gap

Plot for beta_i, r=4, k=2, c=0.77


Plot for beta_i, r=4, k=2, $c=0.772$


Plots show expected progress of the peeling process as a function of the round $i$, for values of the edge density c approaching the threshold value of $\mathrm{c}_{2,4} \approx 0.772$.

## Refined Analysis: Mind the Gap

- Analysis shows that peeling process falls into three "stages".
- First stage: the fraction of surviving nodes falls very quickly as a function of the rounds until it gets close to a certain key value $x^{*}$.
- Second stage: $\Theta(1 / \sqrt{\mid \text { gap } \mid})$ rounds are required to go from "close" to $x^{*}$ to "significantly below" $x$ *.
- Third stage: the analysis of the basic upper bound kicks in, and the fraction of surviving nodes falls doublyexponentially quickly.


## Implementation Issues

## GPU Experimental Results

| Table <br> Load | No. Table <br> Cells | $\%$ <br> Recovered | GPU <br> Recovery Time | Serial <br> Recovery Time | GPU <br> Insert Time | Serial <br> Insert Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.75 | 16.8 million | $100 \%$ | 0.33 s | 6.37 s | 0.31 s | 3.91 s |
| 0.83 | 16.8 million | $50.1 \%$ | 0.42 s | 3.64 s | 0.35 s | 4.34 s |

Table 3: Results of our parallel and serial IBLT implementations with $r=3$ hash functions. The table load refers to the ratio of the number of items in the IBLT to the number of cells in the IBLT.

## Recall: IBLTs



Each stream item hashed to r cells (using $r$ different hash functions) Count KeySum

Insert( x ): For each of the j cells that x is hashed to:
Add key to KeySum
Increment Count
Delete(x): For each of the j cells x is hashed to:
Subtract key from keysum
Decrement Count

## Recall: IBLT Listing Algorithm

- Call a cell "pure" if its count equals 1 .
- While there exists a pure cell:
- Output $\mathrm{x}=\mathrm{keySum}$ of the cell.
- Call Delete(x) on the IBLT.


## GPU Implementation

- Each cell gets a thread.
- Each cell checks if it is pure.
- If so, identify the key it contains and remove it from other cells in the IBLT.
- Do this by subtracting out values in other cells.
- Issue: repeated deletion.
- Several cells might recover and try to remove the same key in the same round. So a key gets deleted more than once!


## Dealing with Repeated Deletion

- To avoid this: use r subtables, such that the $i$ th hash function only hashes into subtable i.
- Break the listing algorithm into serial subrounds. In ith subround, recover only from the $i$ th subtable.
- Avoids repeated deletions, since each item will be hashed to just 1 cell in each subtable.
- Leads to interesting variation in the analysis.
- Subrounds increase runtime, since they must happen sequentially.
- Naively, they may blow up runtime by a factor of r.
- But we show this does not happen.
- Gains in one subround can help later subrounds.
- We show runtime only blows up by a factor of about $\log _{2}(\mathrm{r}-1)$.
- Analysis is similar to Vöcking's $d$-left scheme.
- Fibonacci numbers show up!


## Subround Result

THEOREM B.1. Letr $\geq 3$ and $k \geq 2$. Let $\phi_{r-1}=\lim _{k \rightarrow \infty} F_{r-1}^{1 / k}(k)$ be the asymptotic growth rate for the Fibonacci sequence of order $r-1$. Let $G$ be a hypergraph over $n$ nodes with cn edges generated according to the following random process. The vertices of $G$ are partitioned into r subsets of equal size, and the edges are generated at random subject to the constraint that each edge contains exactly one vertex from each set.

With probability $1-o(1)$, the peeling process for the $k$-core in $G$ that uses $r$ subrounds in each round terminates after $\frac{1}{r \log \phi_{r-1}+\log (k-1)} \log \log n+O(1)$ rounds when $c<c_{k, r}^{*}$.

Summary: use of $r$ subtables increase constant factor in front of the $\log \log n$, but by much less than a factor or $r$.

## Conclusion

- Peeling gives simple, fast greedy algorithms.
- Usually linear or quasi-linear total work.
- Particularly well suited for parallelization.
- Especially when aiming for an empty $k$-core.
- Implementation leads to interesting variation in the analysis.
- Subrounds.
- Can analyze dependence on "gap" to the threshold.


## Thank you!

## Example 1: LDPC Codes for Erasure Channels



## Example 1: LDPC Codes for Erasure Channels



How does an LDPC code encode an 8 -bit message $\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{~m}_{4} \mathrm{~m}_{5} \mathrm{~m}_{6} \mathrm{~m}_{7} \mathrm{~m}_{8}$ ?

## Example 1: LDPC Codes for Erasure Channels



How does an LDPC code encode an 8 -bit message $\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{~m}_{4} \mathrm{~m}_{5} \mathrm{~m}_{6} \mathrm{~m}_{7} \mathrm{~m}_{8}$ ?


## Example 1: LDPC Codes for Erasure Channels



## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



Decoding Algorithm:
While there exists an un-erased a parity-check bit with exactly one un-erased neighbor: Recover the neighbor

## Example 1: LDPC Codes for Erasure Channels



- Decoding $\Longleftrightarrow$ peeling to 2-core on the hypergraph G where:
- Parity-check bits $\Longleftrightarrow$ vertices of G,
- Erased message bits $\longrightarrow$ hyperedges of G.
- Yields capacity-achieving codes with linear encoding and decoding time [Luby, Mitzenmacher, Shokrollahi, Spielman]

