Tutorial: Message Passing Communication Model

David Woodruff IBM Almaden

k-party Number-In-Hand Model

Point-to-point communication

- Protocol transcript determines who speaks next

Goals:

- compute a function f(x¹, ..., x^k)
- minimize communication complexity

k-party Number-In-Hand Model

Convenient to introduce a "coordinator" C who may or may not have an input

All communication goes through the coordinator

Communication only affected by a factor of 2 (plus one word per message)

Model Motivation

- Data distributed and stored in the cloud
 - For speed
 - Just doesn't fit on one device

- Sensor networks / Network routers
 - Communication very power-intensive
 - Bandwidth limitations
- Distributed functional monitoring
 - Continuously monitor a statistic of distributed data
 - Don't want to keep sending all data to one place

Randomized Communication Complexity

- Randomized communication complexity R(f) of a function f:
 - The communication cost of a protocol is the sum of all individual message lengths, maximized over all inputs and random coins
 - R(f) is the minimal cost of a protocol, which for every set of inputs, fails in computing f with probability < 1/3

Talk Outline

Database Problems

Graph Problems

Linear-Algebra Problems

Recent Work / Conclusions

Database Problems

Some well-studied problems

- Server i has xi
- $x = x^1 + x^2 + ... + x^k$
- $f(x) = |x|_p = (\Sigma_i x_i^p)^{1/p}$
- for binary vectors x^i , $|x|_0$ is the number of distinct values (focus of this talk)

Exact Number of Distinct Elements

- $\Omega(n)$ randomized complexity for exact computation of $|x|_0$
- Lower bound holds already for 2 players

$$\mathsf{T}\subseteq [\mathsf{n}]$$

- Reduction from 2-Player Set-Disjointness (DISJ)
 - Either $|S \cap T| = 0$ or $|S \cap T| = 1$
 - $|S \cap T| = 1 \rightarrow DISJ(S,T) = 1$, $|S \cap T| = 0 \rightarrow DISJ(S,T) = 0$
 - [KS, R] Ω (n) communication
 - $|x|_0 = |S| + |T| |S \cap T|$

Approximate Answers

Output an estimate f(x) with $f(x) \in (1 \pm \varepsilon) |x|_0$

What is the randomized communication cost as a function of k, ε , and n?

Note that understanding the dependence on ϵ is critical, e.g., ϵ < .01

An Upper Bound

- Player i interprets its input as the i-th set in a data stream
- Players run a data stream algorithm, and pass the state of the algorithm to each other

- There is a data stream algorithm for estimating # of distinct elements using $O(1/\epsilon^2 + \log n)$ bits of space
- Gives a protocol with O(k/ ε² + k log n) communication

Lower Bound

This approach is optimal!

• We show an $\Omega(k/\epsilon^2 + k \log n)$ communication lower bound

- First show an Ω(k/ ε²) bound [W, Zhang 12], see also [Phillips, Verbin, Zhang 12]
 - Start with a simpler problem GAP-THRESHOLD

Lower Bound for Approximate |x|₀

- GAP-THRESHOLD problem:
 - Player P_i holds a bit Z_i
 - Z_i are i.i.d. Bernoulli(1/2)
 - Decide if

$$\sum_{i=1}^{k} Z_i > k/2 + k^{1/2}$$
 or $\sum_{i=1}^{k} Z_i < k/2 - k^{1/2}$

Otherwise don't care (distributional problem)

- Intuitively $\Omega(k)$ bits of communication is required
 - Sampling doesn't work...
 - How to prove such a statement??

Rectangle Property of Protocols

- If inputs (x,y) and (a,b) cause the same transcript, then so do (x,b) and (a,y)
- For randomized protocols,
 Pr[seeing a transcript τ given inputs a,b] = p(a, τ) · q(b, τ)

Rectangle Property

- Claim: for any protocol transcript τ , it holds that $Z_1, Z_2, ..., Z_k$ are independent conditioned on τ
- Can assume players are deterministic by Yao's minimax principle
- The input vector Z in {0,1}^k giving rise to a transcript τ is a combinatorial rectangle: S = S₁ x S₂ x ... x S_k where S_i in {0,1}
- Since the Z_i are i.i.d. Bernoulli(1/2), conditioned on being in S, they are still independent!

GAP-THRESHOLD

- The Z_i are i.i.d. Bernoulli(1/2)
- Coordinator wants to decide if:

$$\sum_{i=1}^{k} Z_i > k/2 + k^{1/2}$$
 or $\sum_{i=1}^{k} Z_i < k/2 - k^{1/2}$

• By independence of the $Z_i \mid \tau$, it is equivalent to fixing some Z_i to be 0 or 1, and the remaining Z_i to be Bernoulli(1/2)

The Proof

• Lemma [Unbiased Conditional Expectation]: W.pr. 2/3, over the transcript τ ,

$$|E[\sum_{i=1}^{k} Z_i | \tau] - k/2| < 100 k^{1/2}$$

• Otherwise, since $Var[\sum_{i=1}^k Z_i \mid \tau] < k$ for any τ , by Chebyshev's inequality, w.p.r. > 1/2,

$$|\sum_{i=1}^{k} Z_i - k/2| > 50k^{1/2}$$

contradicting concentration

Lemma [Lots of Randomness After Conditioning]: If the communication is o(k), then w.pr. 1-o(1), over the transcript τ, for a 1-o(1) fraction of the indices i,
 Z_i | τ is Bernoulli(1/2)

The Proof Continued

- Let's condition on a τ satisfying the previous two lemmas
- Lemma [Anti-Concentration]:

W.pr. .001, over the
$$Z_i \mid \tau$$

$$E[\sum_{i=1}^k Z_i \mid \tau] - \sum_{i=1}^k Z_i \mid \tau > 100 \text{ k}^{1/2}$$

W.pr. .001, over the
$$Z_i \mid \tau$$

$$\sum_{i=1}^k Z_i \mid \tau - E[\sum_{i=1}^k Z_i \mid \tau] > 100 \text{ k}^{1/2}$$

- These follow by anti-concentration
- So the protocol fails with this probability

Generalizations

- Generalizes to: Z_i are i.i.d. Bernoulli(β)
- Coordinator wants to decide if:

$$\sum_{i=1}^{k} Z_i > \beta k + (\beta k)^{1/2} \text{ or } \sum_{i=1}^{k} Z_i < \beta k - (\beta k)^{1/2}$$

 When the players have internal randomness, the proof generalizes: any successful protocol must satisfy:

 Pr_{τ} [for 1-o(1) fraction of indices i, $H(Z_i \mid \tau) = o(1)$] > 2/3

How to get a lower bound for approximating |x|₀?

Composition Idea

- Give the coordinator a random set S from {1, 2, ..., m}
- If $Z_i = 1$, give P_i a random set T_i so that DISJ(S, T_i) = 1, else give P_i a random set T_i so that DISJ(S, T_i) = 0
- Is $\sum_{i=1}^k \text{DISJ}(S,T_i) > k/2 + k^{1/2}$ or $\sum_{i=1}^k \text{DISJ}(S,T_i) < k/2 k^{1/2}$? - Equivalently, is $\sum_{i=1}^k Z_i > k/2 + k^{1/2}$ or $\sum_{i=1}^k Z_i < k/2 - k^{1/2}$
- Our Result: total communication is $\Omega(mk)$

Composition Idea Continued

- For this composed problem, a correct protocol satisfies: \Pr_{τ} [for 1-o(1) fraction of indices i, \Pr_{τ} [for 1-o(1)] > 2/3
- Most DISJ instances are "solved" by the protocol
- How to formalize?
- Suppose the communication were o(km)
- By averaging, there is a player P_i so that
 - The communication between C and P_i is o(m)
 - $H(Z_i | \tau) = o(1)$ with large probability

The Punch Line

Reduce to a 2-player problem!

- Let the two players in the 2-player DISJ problem be the coordinator C and P_i
- C can sample the inputs of all players P_j for j != i
- Run the multi-player protocol. Messages between C and P_j is sent, for j != i, can be simulated locally!
- So total communication is o(m) to solve DISJ with large probability, a contradiction!

Reduction to |x|₀

- $m = 1/\epsilon^2$.
- Coordinator wants to decide if:

$$\sum_{i=1}^k Z_i > \beta k + (\beta \ k)^{1/2} \text{ or } \sum_{i=1}^k Z_i < \beta k - (\beta k)^{1/2}$$
 Set probability β of intersection to be $1/(4k\epsilon^2)$

• Approximating $|x|_0$ up to 1+ ε solves this problem

Reduction to $|x|_0$

- Coordinator replaces its input set with [1/ε²] \ S
- If DISJ(S,T_i) = 0, then T_i is contained in [1/ε²] \ S
- If DISJ(S,T_i) = 1, then T_i adds a new distinct item to [1/ε²] \ S
 If DISJ(S,T_i) = 1 and DISJ(S,T_i) = 1, they typically add different items
- So the number of distinct items is about $1/(2\epsilon^2) + \sum_{i=1}^k Z_i$

Other Lower Bound for |x|₀

• Overall lower bound is $\Omega(k/\epsilon^2 + k \log n)$

 The k log n lower bound also a reduction to a 2-player problem [W, Zhang 14]

 This time to a 2-player Equality problem (details omitted)

Talk Outline

Database Problems

Graph Problems

Linear-Algebra Problems

Recent Work / Conclusions

Graph Problems [W,Zhang13]

- Canonical hard-multiplayer problem for graph problems:
- n x k binary matrix A
 - Each player has a column of A
 - Is the number of rows with at least one 1 larger than n/2?
- Requires $\Omega(kn)$ bits of communication to solve with probability at least 2/3

 $\Omega(kn)$ lower bound for connectivity and bipartiteness without edge duplications

Talk Outline

Database Problems

Graph Problems

Linear-Algebra Problems

Recent Work / Conclusions

Linear Algebra [Li,Sun,Wang,W]

- k players each have an n x n matrix in a finite field of p elements
- Players want to know if the sum of their matrices is invertible
- Randomized $\Omega(kn^2 \log p)$ communication lower bound
- Same lower bound for rank, solving linear equations
- Open question: lower bound over the reals?

Talk Outline

Database Problems

Graph Problems

Linear-Algebra Problems

Recent Work / Conclusions

Recent Work: Set Disjointness

- Each set $T_i \subseteq [m]$
- k-player Disjointness: is $T_1 \cap T_2 \cap \cdots \cap T_k = \emptyset$?
- Braverman et al. obtain $\Omega(km)$ lower bound
- Input distribution
 - random half of the items appear in all sets except a random one
 - random half the items independently occur in each T_i
 - with probability 1/2, make a random item occur in each T_i

Recent Work: Set Disjointness

- The coordinator can figure out which rows are random, but can't easily communicate this to the players
- Each player knows which positions in its column are zero, but can't easily communicate this to the coordinator
- Direct sum theorems with mixed information cost measure

Recent Work: Topology

- Chattopadhyay, Radhakrishnan, Rudra study multiplayer communication in topologies other than star topology
 - Obtain bounds that depend on 1-median of the network
- Chattopadhyay, Rudra
 - Only players at a subset of nodes have an input
 - Communication cost depends on Steiner tree cost

Conclusion

- Illustrated techniques for lower bounds for multiplayer communication via the distinct elements problem
- Many tight lower bounds known
 - Statistical problems (lp norms)
 - Graph problems
 - Linear algebra problems
- Open Questions and Future Directions
 - Rounds vs. communication
 - Connections to other models, e.g., MapReduce
 - Topology-sensitive problems