# Tutorial: Message Passing Communication Model 

David Woodruff<br>IBM Almaden

## k-party Number-In-Hand Model



- compute a function $f\left(x^{1}, \ldots, x^{k}\right)$
- minimize communication complexity


## k-party Number-In-Hand Model



Convenient to introduce a "coordinator" C who may or may not have an input

All communication goes through the coordinator
Communication only affected by a factor of 2 (plus one word per message)

## Model Motivation

- Data distributed and stored in the cloud
- For speed
- Just doesn't fit on one device
- Sensor networks / Network routers
- Communication very power-intensive
- Bandwidth limitations
- Distributed functional monitoring
- Continuously monitor a statistic of distributed data
- Don't want to keep sending all data to one place


## Randomized Communication Complexity

- Randomized communication complexity $R(f)$ of a function f:
- The communication cost of a protocol is the sum of all individual message lengths, maximized over all inputs and random coins
- $R(f)$ is the minimal cost of a protocol, which for every set of inputs, fails in computing f with probability < 1/3


## Talk Outline

- Database Problems
- Graph Problems
- Linear-Algebra Problems
- Recent Work / Conclusions


## Database Problems



Some well-studied problems

- Server i has $x^{i}$
- $x=x^{1}+x^{2}+\ldots+x^{k}$
- $f(x)=|x|_{p}=\left(\sum_{i} x_{i}^{p}\right)^{1 / p}$
- for binary vectors $x^{i},|x|_{0}$ is the number of distinct values (focus of this talk)


## Exact Number of Distinct Elements

- $\Omega(\mathrm{n})$ randomized complexity for exact computation of $|\mathrm{x}|_{0}$
- Lower bound holds already for 2 players

- Reduction from 2-Player Set-Disjointness (DISJ)
- Either $|\mathrm{S} \cap \mathrm{T}|=0$ or $|\mathrm{S} \cap \mathrm{T}|=1$
- $|\mathrm{S} \cap \mathrm{T}|=1 \rightarrow \operatorname{DISJ}(\mathrm{~S}, \mathrm{~T})=1,|\mathrm{~S} \cap \mathrm{~T}|=0 \rightarrow \operatorname{DISJ}(\mathrm{~S}, \mathrm{~T})=0$
- $[\mathrm{KS}, \mathrm{R}] \Omega(\mathrm{n})$ communication
- $|\mathrm{x}|_{0}=|\mathrm{S}|+|\mathrm{T}|-|\mathrm{S} \cap \mathrm{T}|$


## Approximate Answers

Output an estimate $f(x)$ with $f(x) \in(1 \pm \varepsilon)|x|_{0}$

What is the randomized communication cost as a function of $k, \varepsilon$, and $n$ ?

Note that understanding the dependence on $\varepsilon$ is critical, e.g., $\varepsilon<.01$

## An Upper Bound

- Player i interprets its input as the i-th set in a data stream
- Players run a data stream algorithm, and pass the state of the algorithm to each other

- There is a data stream algorithm for estimating \# of distinct elements using $O\left(1 / \varepsilon^{2}+\log n\right)$ bits of space
- Gives a protocol with $\mathrm{O}\left(\mathrm{k} / \varepsilon^{2}+\mathrm{k} \log \mathrm{n}\right)$ communication


## Lower Bound

- This approach is optimal!
- We show an $\Omega\left(k / \varepsilon^{2}+k \log n\right)$ communication lower bound
- First show an $\Omega\left(\mathrm{k} / \varepsilon^{2}\right)$ bound [W, Zhang 12], see also [Phillips, Verbin, Zhang 12]
- Start with a simpler problem GAPTHRESHOLD


## Lower Bound for Approximate $|\mathrm{x}|_{0}$

- GAP-THRESHOLD problem:
- Player $P_{i}$ holds a bit $Z_{i}$
$-Z_{i}$ are i.i.d. Bernoulli(1/2)
- Decide if

$$
\sum_{i=1}{ }^{k} Z_{i}>k / 2+k^{1 / 2} \text { or } \sum_{i=1}^{k} Z_{i}<k / 2-k^{1 / 2}
$$

Otherwise don't care (distributional problem)

- Intuitively $\Omega(\mathrm{k})$ bits of communication is required
- Sampling doesn't work...
- How to prove such a statement??


## Rectangle Property of Protocols



- If inputs ( $\mathrm{x}, \mathrm{y}$ ) and ( $\mathrm{a}, \mathrm{b}$ ) cause the same transcript, then so do ( $\mathrm{x}, \mathrm{b}$ ) and ( $\mathrm{a}, \mathrm{y}$ )
- For randomized protocols,
$\operatorname{Pr}[$ seeing a transcript $\tau$ given inputs $a, b]=p(a, \tau) \cdot q(b, \tau)$


## Rectangle Property

- Claim: for any protocol transcript $\tau$, it holds that $Z_{1}, Z_{2}, \ldots, Z_{k}$ are independent conditioned on $\tau$
- Can assume players are deterministic by Yao's minimax principle
- The input vector $Z$ in $\{0,1\}^{\mathrm{k}}$ giving rise to a transcript $\tau$ is a combinatorial rectangle: $S=S_{1} \times S_{2} \times \ldots \times S_{k}$ where $S_{i}$ in $\{0,1\}$
- Since the $Z_{i}$ are i.i.d. Bernoulli( $1 / 2$ ), conditioned on being in S, they are still independent!


## GAP-THRESHOLD



- The $\mathrm{Z}_{\mathrm{i}}$ are i.i.d. Bernoulli(1/2)
- Coordinator wants to decide if:

$$
\sum_{i=1}{ }^{k} Z_{i}>k / 2+k^{1 / 2} \text { or } \sum_{i=1}{ }^{k} Z_{i}<k / 2-k^{1 / 2}
$$

- By independence of the $\mathrm{Z}_{\mathrm{i}} \mid \tau$, it is equivalent to fixing some
$Z_{i}$ to be 0 or 1 , and the remaining $Z_{i}$ to be Bernoulli( $1 / 2$ )


## The Proof

- Lemma [Unbiased Conditional Expectation]: W.pr. 2/3, over the transcript $\tau$,

$$
\left|\mathrm{E}\left[\sum_{\mathrm{i}=1}{ }^{\mathrm{k}} \mathrm{Z}_{\mathrm{i}} \mid \tau\right]-\mathrm{k} / 2\right|<100 \mathrm{k}^{1 / 2}
$$

- Otherwise, since $\operatorname{Var}\left[\sum_{i=1}{ }^{\mathrm{k}} Z_{\mathrm{i}} \mid \tau\right]<\mathrm{k}$ for any $\tau$, by Chebyshev's inequality, w.p.r. > 1/2,

$$
\left|\sum_{i=1}^{k} Z_{i}-k / 2\right|>50 k^{1 / 2}
$$

contradicting concentration

- Lemma [Lots of Randomness After Conditioning]: If the communication is $o(k)$, then w.pr. $1-\mathrm{o}(1)$, over the transcript $\tau$, for a 1-o(1) fraction of the indices i , $\mathrm{Z}_{\mathrm{i}} \mid \tau$ is Bernoulli( $1 / 2$ )


## The Proof Continued

- Let's condition on a $\tau$ satisfying the previous two lemmas
- Lemma [Anti-Concentration]:
W.pr. . 001, over the $Z_{i} \mid \tau$

$$
E\left[\sum_{i=1}^{k} Z_{i} \mid \tau\right]-\sum_{i=1}^{k} Z_{i} \mid \tau>100 \mathrm{k}^{1 / 2}
$$

W.pr. .001, over the $Z_{i} \mid \tau$

$$
\sum_{\mathrm{i}=1}{ }^{\mathrm{k}} \mathrm{Z}_{\mathrm{i}} \mid \tau-\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{Z}_{\mathrm{i}} \mid \tau\right]>100 \mathrm{k}^{1 / 2}
$$

- These follow by anti-concentration
- So the protocol fails with this probability


## Generalizations

- Generalizes to: $Z_{i}$ are i.i.d. Bernoulli( $\beta$ )
- Coordinator wants to decide if:

$$
\sum_{i=1}{ }^{k} Z_{i}>\beta k+(\beta k)^{1 / 2} \text { or } \sum_{i=1}{ }^{k} Z_{i}<\beta k-(\beta k)^{1 / 2}
$$

- When the players have internal randomness, the proof generalizes: any successful protocol must satisfy: $\operatorname{Pr}_{\tau}\left[\right.$ for 1-o(1) fraction of indices $\left.\mathrm{i}, \mathrm{H}\left(\mathrm{Z}_{\mathrm{i}} \mid \tau\right)=\mathrm{o}(1)\right]>2 / 3$
- How to get a lower bound for approximating $|\mathrm{x}|_{0}$ ?


## Composition Idea



- Give the coordinator a random set $S$ from $\{1,2, \ldots, m\}$
- If $Z_{i}=1$, give $P_{i}$ a random set $T_{i}$ so that $\operatorname{DISJ}\left(S, T_{i}\right)=1$, else give $P_{i}$ a random set $T_{i}$ so that $\operatorname{DISJ}\left(S, T_{i}\right)=0$
- Is $\sum_{i=1}{ }^{k} \operatorname{DISJ}\left(S, T_{i}\right)>k / 2+k^{1 / 2}$ or $\sum_{i=1}{ }^{k} \operatorname{DISJ}\left(S, T_{i}\right)<k / 2-k^{1 / 2}$ ?
- Equivalently, is $\sum_{i=1}{ }^{k} Z_{i}>k / 2+k^{1 / 2}$ or $\sum_{i=1}{ }^{k} Z_{i}<k / 2-k^{1 / 2}$
- Our Result: total communication is $\Omega(\mathrm{mk})$


## Composition Idea Continued

- For this composed problem, a correct protocol satisfies: $\operatorname{Pr}_{\tau}\left[\right.$ for 1-o(1) fraction of indices $\left.\mathrm{i}, \mathrm{H}\left(\mathrm{Z}_{\mathrm{i}} \mid \tau\right)=\mathrm{o}(1)\right]>2 / 3$
- Most DISJ instances are "solved" by the protocol
- How to formalize?
- Suppose the communication were o(km)
- By averaging, there is a player $P_{i}$ so that
- The communication between $C$ and $P_{i}$ is $o(m)$
- $\mathrm{H}\left(\mathrm{Z}_{\mathrm{i}} \mid \tau\right)=0(1)$ with large probability


## The Punch Line



- Reduce to a 2-player problem!

$$
\begin{array}{lll}
\mathrm{T}_{1} & \mathrm{~T}_{2} & \mathrm{~T}_{3}
\end{array}
$$

- Let the two players in the 2-player DISJ problem be the coordinator C and $\mathrm{P}_{\mathrm{i}}$
- C can sample the inputs of all players $P_{j}$ for $j!=i$
- Run the multi-player protocol. Messages between C and $P_{j}$ is sent, for $\mathrm{j}!=\mathrm{i}$, can be simulated locally!
- So total communication is $\mathrm{o}(\mathrm{m})$ to solve DISJ with large probability, a contradiction!


## Reduction to $|x|_{0}$



- $m=1 / \varepsilon^{2}$.
- Coordinator wants to decide if:

$$
\sum_{i=1} k Z_{i}>\beta k+(\beta k)^{1 / 2} \text { or } \sum_{i=1}^{k} Z_{i}<\beta k-(\beta k)^{1 / 2}
$$

Set probability $\beta$ of intersection to be $1 /\left(4 \mathrm{k} \varepsilon^{2}\right)$

- Approximating $|x|_{0}$ up to $1+\varepsilon$ solves this problem


## Reduction to $|x|_{0}$



- Coordinator replaces its input set with $\left[1 / \varepsilon^{2}\right] \backslash S$
- If $\operatorname{DISJ}\left(S, T_{i}\right)=0$, then $T_{i}$ is contained in $\left[1 / \varepsilon^{2}\right] \backslash S$
- If $\operatorname{DISJ}\left(S, T_{\mathrm{i}}\right)=1$, then $\mathrm{T}_{\mathrm{i}}$ adds a new distinct item to $\left[1 / \varepsilon^{2}\right] \backslash \mathrm{S}$
- If $\operatorname{DISJ}\left(\mathrm{S}, \mathrm{T}_{\mathrm{i}}\right)=1$ and $\operatorname{DISJ}\left(\mathrm{S}, \mathrm{T}_{\mathrm{j}}\right)=1$, they typically add different items
- So the number of distinct items is about $1 /\left(2 \varepsilon^{2}\right)+\sum_{i=1}{ }^{k} Z_{i}$


## Other Lower Bound for $|x|_{0}$

- Overall lower bound is $\Omega\left(\mathrm{k} / \varepsilon^{2}+\mathrm{k} \log \mathrm{n}\right)$
- The $\mathrm{k} \log \mathrm{n}$ lower bound also a reduction to a 2-player problem [W, Zhang 14]
- This time to a 2-player Equality problem (details omitted)


## Talk Outline

- Database Problems
- Graph Problems
- Linear-Algebra Problems
- Recent Work / Conclusions


## Graph Problems [W,Zhang13]

- Canonical hard-multiplayer problem for graph problems:
- nx k binary matrix A
- Each player has a column of A
- Is the number of rows with at least one 1 larger than $\mathrm{n} / 2$ ?
- Requires $\Omega(\mathrm{kn})$ bits of communication to solve with probability at least $2 / 3$
$\Omega(\mathrm{kn})$ lower bound for connectivity and bipartiteness without edge duplications


## Talk Outline

- Database Problems
- Graph Problems
- Linear-Algebra Problems
- Recent Work / Conclusions


## Linear Algebra [Li,Sun,Wang,W]

- $k$ players each have an $n \times n$ matrix in a finite field of $p$ elements
- Players want to know if the sum of their matrices is invertible
- Randomized $\Omega\left(\mathrm{kn}^{2} \log \mathrm{p}\right)$ communication lower bound
- Same lower bound for rank, solving linear equations
- Open question: lower bound over the reals?


## Talk Outline

- Database Problems
- Graph Problems
- Linear-Algebra Problems
- Recent Work / Conclusions


## Recent Work: Set Disjointness



- Each set $\mathrm{T}_{\mathrm{i}} \subseteq[\mathrm{m}]$
- k-player Disjointness: is $\mathrm{T}_{1} \cap \mathrm{~T}_{2} \cap \cdots \cap \mathrm{~T}_{\mathrm{k}}=\emptyset$ ?
- Braverman et al. obtain $\Omega(\mathrm{km})$ lower bound
- Input distribution
- random half of the items appear in all sets except a random one
- random half the items independently occur in each $T_{i}$
- with probability $1 / 2$, make a random item occur in each $T_{i}$


## Recent Work: Set Disjointness



- The coordinator can figure out which rows are random, but can't easily communicate this to the players
- Each player knows which positions in its column are zero, but can't easily communicate this to the coordinator
- Direct sum theorems with mixed information cost measure


## Recent Work:Topology

- Chattopadhyay, Radhakrishnan, Rudra study multiplayer communication in topologies other than star topology
- Obtain bounds that depend on 1-median of the network
- Chattopadhyay, Rudra
- Only players at a subset of nodes have an input
- Communication cost depends on Steiner tree cost


## Conclusion

- Illustrated techniques for lower bounds for multiplayer communication via the distinct elements problem
- Many tight lower bounds known
- Statistical problems (lp norms)
- Graph problems
- Linear algebra problems
- Open Questions and Future Directions
- Rounds vs. communication
- Connections to other models, e.g., MapReduce
- Topology-sensitive problems

