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The Multiclass Prediction Problem

Repeatedly

1 See x

2 Predict ŷ ∈ {1, ...,K}
3 See y

Goal: Find h(x) minimizing error rate:

Pr
(x ,y)∼D

(h(x) 6= y)

with h(x) fast.
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Trick #1

K is small



Trick #2: A hierarchy exists

So use Trick #1 repeatedly.
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Trick #3: Shared representation

Very helpful... but computation in the last layer can still blow up.
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Trick #4: “Structured Prediction”

But what if the structure is unclear?
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Trick #5: GPU

4 Teraflops is great... yet still burns energy.
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How fast can we hope to go?

Theorem: There exists multiclass classification problems where
achieving 0 error rate requires Ω(logK ) time to train or test per
example.

Proof: By construction

Pick y ∼ U(1, ...,K )

Any prediction algorithm outputting less than log2 K bits loses
with constant probability.

Any training algorithm reading an example requires Ω(log2 K ) time.
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Can we predict in time O(log2 K )?
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Not it #1: Sparse Error Correcting Output Codes

1 Create O(logK ) binary vectors biy of length K

2 Train O(logK ) binary classifiers hi to minimize error rate:
Prx ,y (hi (x) 6= biy )

3 Predict by finding y with minimal error.

Prediction is Ω(K )
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Not it #2: Hierarchy Construction

1 Build confusion matrix of errors.

2 Recursive partition to create hierarchy.

3 Apply hierarchy solution.

Training is Ω(K ) or worse.



Not it #2: Hierarchy Construction

1 Build confusion matrix of errors.

2 Recursive partition to create hierarchy.

3 Apply hierarchy solution.

Training is Ω(K ) or worse.



Not it #2: Hierarchy Construction

1 Build confusion matrix of errors.

2 Recursive partition to create hierarchy.

3 Apply hierarchy solution.

Training is Ω(K ) or worse.



Not it #2: Hierarchy Construction

1 Build confusion matrix of errors.

2 Recursive partition to create hierarchy.

3 Apply hierarchy solution.

Training is Ω(K ) or worse.



Not it #3: Unnormalized learning

Train K regressors by
For each example (x , y)

1 Train regressor y with (x , 1).

2 Pick y ′ 6= y uniformly at random.

3 Train regressor y ′ with (x ,−1).

Prediction is still Ω(K ).
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Can we predict in time O(log2 K )?



Is logarithmic time even possible?

P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

P({2, 3}) > P(1)⇒ lose for divide and conquer



Filter Trees [BLR09]

P(y=1) = .4

P(y=2) = .3

P(y=3) = .3

1

2 3

1 v {2,3}

2 v 3

1 Learn 2v3 first

2 Throw away all error examples

3 Learn 1 v Survivors

Theorem: For all multiclass problems, for all binary classifiers,
Multiclass Regret ≤ Average Binary Regret * log(K )



Can you make it robust?

1 2 4 5 6 7 83

Winner

Theorem: [BLR09] For all multiclass problems, for all binary
classifiers, a log(K)-correcting tournament satisfies:
Multiclass Regret ≤ Average Binary Regret * 5.5
Determined best paper prize for ICML2012 (area chair decisions).
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How do you learn structure?

Not all partitions are equally difficult.
Compare {1, 7}v{3, 8} to {1, 8}v{3, 7}
What is better?

[BWG10]: Better to confuse near leaves than near root.
Intuition: the root predictor tends to be overconstrained while the
leafwards predictors are less constrained.
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The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels, find a
partitioner h that maximizes:

Ex ,y |Pr(h(x) = 1, y)− Pr(h(x) = 1) Pr(y)|

where Xy is the set of x associated with y .
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The Partitioning Problem [CL14]

Given a set of n examples each with one of K labels, find a
partitioner h that maximizes:

where Xy is the set of x associated with y .

Nonconvex for any symmetric hypothesis class (ouch)



Bottom Up doesn’t work

1 2 3

Suppose you use linear representations.

Suppose you first build a 1v3 predictor.
Suppose you then build a 2v{1v3} predictor.
You lose.
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Does partitioning recurse well?

Theorem: If at every node n,

Ex ,y |Pr(h(x) = 1, y)− Pr(h(x) = 1) Pr(y)| > γ

then after (
1

ε

) 4(1−γ)2 ln k

γ2

splits, the multiclass error is less than ε.



Online Partitioning

Relax the optimization criteria:
Ex ,y

∣∣Ex |y [ŷ(x)]− Ex [ŷ(x)]
∣∣

... and approximate with running average

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

1 if ey < e then b = −1 else b = 1

2 Update w using (x , b)

3 ny ← ny + 1

4 ey ← (ny−1)ey
ny

+ ŷ(x)
ny

5 e ← (t−1)e
t + ŷ(x)

t

Apply recursively to construct a tree structure.
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Accuracy for a fixed training time
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Test Error %, optimized, no train-time constraint
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Test Error %, optimized, no train-time constraint
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Classes vs Test time ratio
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Can we predict in time O(log2 K )?

What is the right way to achieve consistency and dynamic
partition?

How can you balance representation complexity and sample
complexity?
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