
DESIGN CHALLENGES FOR SCALABLE
CONCURRENT DATA STRUCTURES

for Many-Core Processors

Philippas Tsigas

DIMACS
March 15th, 2011

Data Structures In Manycore Sys.

Decomposition

Load Balancing

Inter Task
Communication

Sy
nc

hr
on

iza
tio

n

Concurrent Data Structures:
Our NOBLE Library project

 Fundamental shared data structures
 Stacks
 Queues
 Deques
 Priority Queues

 Memory Management
 Memory allocation
 Memory reclamation (garbage collection)

 Atomic primitives
 Single-word and Multi-word transactions.

 Dictionaries
 Linked Lists
 Snapshots

Many-core?

 No clear definition, but at least more than 10 cores
 Some say thousands

Dual-, Quad-, Hexa-, Octo-, Dekaexi-? Trianta dyo-? Many-core!

 The most commonly available many-core platforms are the
medium to high end graphics processors

 Have up to 30 multiprocessors and available at a low-cost
 CUDA and OpenCL have made them easily accessible

Framework for parallel computing

Computing platform developed by NVIDIA

A Basic Comparison

 Large cache
 Few threads

 Small/No cache
 SIMD
 Wide and fast memory

bus with memory
operations that can be
coalesced

 Thousands of threads
masks memory latency

Normal processors Graphics processors

CUDA System Model

Global Memory

Multiprocessor 0 Multiprocessor 1

Shared
Memory

Shared
Memory

Thread
Block 0

Thread
Block 1

Thread
Block x

Thread
Block y

CUDA System Model

 Atomic primitives
 None -> For global memory -> For shared memory

 Threads per multiprocessor
 768 -> 1024 -> 1536

 Shared memory
 16KB -> 48KB

 SIMD width
 8 words -> 32 words

Locks are not supported

 Not in CUDA, not in OpenCL
 Fairness of hardware scheduler unknown
 Thread block holding a lock might be swapped out

indefinitely, for example

No Fairness Guarantees

…
…
while(atomicCAS(&lock,0,1));
ctr++;
lock = 0;
…

Thread holding lock is
never scheduled!

Lock-free Data Structures
 Mutual exclusion (Semaphores, mutexes, spin-locks, disabling interrupts: Protects critical

sections)
 Locks limits concurrency, priority inversion
 Busy waiting – repeated checks to see if lock has been released or not
 Convoying – processes stack up before locks
 Blocking Locks are not composable

All code that accesses a piece of shared state must know and obey the locking
convention, regardless of who wrote the code or where it resides.

 Lock-freedom is a progress guarantee
 In practice it means that

 A fast process doesn’t
have to wait for a slow
or dead process

 No deadlocks
 Shown to scale better than blocking

approaches

Definition
For all possible

executions, at least one
concurrent operation
will succeed in a finite

number of its own steps

11

A Lock-free Implementation of a
Counter

class Counter {
int next = 0;

int getNumber () {
int t;
do {

t = next;
} while (CAS (&next, t, t + 1) != t);
return t;

}
}

 In this case a non-blocking design is easy:

Atomic compare and swap

Location
Expected value

New value

Lock Free Concurrent Data Structures

LF DS in Normal Processors:
Joint work with D. Cederman,

A. Gidenstamn, Ph. Ha, M.
Papatriantafilou, H. Sundell, Y.

Zhang

Graphics Processors:
Joint work D. Cederman, Ph.

Ha, O. Anshus

Skiplists

Queues, Priority, Deques

Hashtables, Dictionaries

…

H 1 5 8 T

Doubly Linked Lists

A Basic Comparison

 Large cache
 Few threads
 Atomics (CAS, …)

 Small/No cache
 SIMD
 Wide and fast memory bus

with memory operations
that can be coalesced

 Thousands of threads
masks memory latency

 No atomics -> …->
expensive ones

Normal processors Graphics processors

Emulating CAS from Coalesced Memory Access

Lock-free Data Structures Without
Atomics?

Aligned-inconsecutive word (aiword)

 Memory is aligned to m-unit words, m is a constant.
 m-aiword for short

 A read/write operation accesses an arbitrary non-empty subset of
the m units of an aiword.
 m-aiwrite = m-aiword assignment.

 Alignment restriction
 m-aiwords must start at addresses that are multiples of m.

 Ex: 8-aiwrite

13120 1 2 3 654 7 8 9 10 11 14 15 …

8-aiword 8-aiword

8-aiwrite

p0,p1,
p2,p3

p4

Binary consensus (BC) for 4+1 processes Consensus for 5 processes

p0 p1 p3

BC

BC

p0,p1

p0,p1,p2,p3,p4

time

7654 8
10 32

p0 p1 p2 p3

p4

1
8

0 32
4 5 6 7

p0 p1 p2 p3

p4

writing
schema

[0,4,8] ⇒ p4 → p0
[1,5,8] ⇒ p1 → p4
[2,6,8] ⇒ p4 → p2
[3,7,8] ⇒ p4 → p3

⇒ red wrote first

p2 p4

p0,p1,p2,p3

0

50

100

150

200

250

1 30 60

CAS

MemAcc

Hardware Primitives are Significant for
Concurrent Data Structures

Threads

Ti
m

e

Concurrent Data Structures Need Scalable
Strong Synchronization Primitives

 Scalable
 Universal

 powerful enough to support any kind of synchronization (like CAS,
LL/SC)

 Feasible
 Easy to implement in hardware

 Easy-to-use in Algorithmic Design

Desired Features

Joined work with Phuong Ha and Otto Anshus

Non-blocking Full/Empty Bit

Non-blocking Full/Empty Bit

 Combinable operations
 Universal
 Feasible

 Slight modification of a primitive that has been implemented in
hardware

 Easy-to-use

Original FEB: Store-if-
Clear-and-Set
SICAS(x,v) {

Wait for flagx to be false;
(x, flagx) ← (v, true);

}

A variant of the original FEB that always returns a value
instead of waiting for a conditional flag

Test-Flag-and-Set
TFAS(x, v) {

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if

return (o, flago);
}

A variant of the original FEB that always returns a value
instead of waiting for a conditional flag

Test-Flag-and-Set
TFAS(x, v) {

(o, flago) ← (x, flagx);
if flagx = false then

(x, flagx) ← (v, true);
end if

return (o, flago);
}

Store-And-Clear
SAC(x, v) {

(o, flago) ← (x, flagx);
(x, flagx) ← (v, false);

return (o, flago);
}

Store-And-Set
SAS(x, v) {

(o, flago) ← (x, flagx);
(x, flagx) ← (v, true);

return (o, flago);
}

Load
Load(x) {

return (x, flagx);
}

Combinability

 Key idea: Combinability
⇒ eliminates contention & reduce load
 Ex: TFAS

x=⊥

TFAS(x,1)
TFAS(x,2)

TFAS(x,3)
TFAS(x,4)

TFAS(x,1) TFAS(x,3)

TFAS(x,1)

x=1

⊥ 1 1 1

⊥ 1

⊥

Note: CAS or LL/SC is not combinable

New algorithmic techniques that come from the introduction of

new hardware features.

Core algorithmic design did not change when going from GP CPU to GPU.

Optimistic concurrency control works in manycore systems. Hard to derive

worst case guarantees.

Scheduler part of the reference model?

Need to start a discussion with the architects about the

abstractions/primitives that we want/need.

Conclusions

PEPPHER: PERFORMANCE
PORTABILITY AND
PROGRAMMABILITY FOR
HETEROGENEOUS MANY-CORE
ARCHITECTURES

This project is part of the portfolio of the
G.3 - Embedded Systems and Control Unit
Information Society and Media Directorate-General
European Commission

www.peppher.eu

Copyright © 2010 The PEPPHER Consortium

Contract Number: 248481
Total Cost [€]: 3.44 million
Starting Date: 2010-01-01

Duration: 36 months

 University of Vienna (Coordinator), Austria
 Siegfried Benkner, Sabri Pllana and Jesper Larsson Träff

 Chalmers University, Sweden
 Philippas Tsigas

 Codeplay Software Ltd., UK
 Andrew Richards

 INRIA, France
 Raymond Namyst

 Intel GmbH, Germany
 Herbert Cornelius

 Linköping University, Sweden
 Christoph Kessler

 Movidius Ltd. Ireland
 David Moloney

 Karlsruhe Institute of Technology, Germany
 Peter Sanders

28Author(s)

Project Consortium

Programmability Composition &
Coordination

Design Patterns,
Component Based
Application Design

Performance
Portability

Annotations
Runtime/Schedule/Sel

ection Hints, Data
Information, …

Library
Adaptive Algorithms &
Data Structures, Auto-
Tunable Components

Compilation
Automatic Variant

Generation, Variant
Selection, Tuning

Runtime
Criteria Specific

Scheduling, Resource
Efficient Runtime

Programmability and Performance Portability

29

Thank You!

	Design Challenges for Scalable Concurrent Data Structures� for Many-Core Processors
	Data Structures In Manycore Sys.
	Concurrent Data Structures: �Our NOBLE Library project
	Many-core?
	A Basic Comparison
	CUDA System Model
	CUDA System Model
	Locks are not supported
	No Fairness Guarantees
	Lock-free Data Structures
	A Lock-free Implementation of a Counter
	Lock Free Concurrent Data Structures
	A Basic Comparison
	Lock-free Data Structures Without Atomics?
	Slide Number 15
	Aligned-inconsecutive word (aiword)
	
	Hardware Primitives are Significant for Concurrent Data Structures
	Concurrent Data Structures Need Scalable Strong Synchronization Primitives
	Non-blocking Full/Empty Bit
	Non-blocking Full/Empty Bit
	A variant of the original FEB that always returns a value instead of waiting for a conditional flag
	A variant of the original FEB that always returns a value instead of waiting for a conditional flag
	Combinability
	Conclusions
	Slide Number 26
	PEPPHER: Performance Portability and�Programmability for�Heterogeneous Many-core Architectures
	Project Consortium
	Slide Number 29
	Slide Number 30

