Counting Triangles and Modeling MapReduce

Siddharth Suri
Yahoo! Research

- Modeling MapReduce
- How and why did we come up with our model?
- [Karloff, Suri, Vassilvitskii SODA 2010]
- MapReduce algorithms for counting triangles in a graph
- What do these algorithms say about the model?
> [Suri, Vassilvitskii WWW 2011]
- Open research questions

MapReduce is Widely Used

- MapReduce is a widely used method of parallel computation on massive data.

YAHOO! uses it to process 120 TB daily
facebook. uses it to process 80 TB daily

- Google uses it to process 20 petabytes per day
- Also used at ©ftedeundincimes amazon.com.

- Implementations: Hadoop, Amazon Elastic MapReduce
- Invented by [Dean \& Ghemawat '08]

MapReduce: Research Question

- In practice MapReduce is often used to answer questions like:
- What are the most popular search queries?
\Rightarrow What is the distribution of words in all emails?
- Often used for log parsing, statistics
- Massive input, spread across many machines, need to parallelize.
- Moves the data, and provides scheduling, fault tolerance
- What is and is not efficiently computable using MapReduce?

Overview of MapReduce

- One round of MapReduce computation consists of 3 steps Input \longrightarrow MAP $_{1} \rightarrow$ SHUFFLE \rightarrow REDUCE $_{1} \longrightarrow$ Output
- One round of MapReduce computation consists of 3 steps

Overview of MapReduce

- One round of MapReduce computation consists of 3 steps

$$
\text { Input } \longrightarrow \text { MAP }_{1} \rightarrow \text { SHUFFLE } \rightarrow \text { REDUCE }_{1}
$$

MapReduce Basics: Summary

- Data are represented as a <key, value> pair
- Map: <key, value> \rightarrow multiset of <key, value> pairs
- user defined, easy to parallelize
- Shuffle: Aggregate all <key, value> pairs with the same key.
- executed by underlying system
- Reduce: <key, multiset(value)> \rightarrow <key, multiset(value)>
- user defined, easy to parallelize
- Can be repeated for multiple rounds

Building a Model of MapReduce

- The situation:

- Input size, n, is massive
- Mappers and Reducers run on commodity hardware
- Therefore:
- Each machine must have $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ memory
$>\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ machines

Building a Model of MapReduce

- Consequences:

- Mappers have $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ space
- Length of a <key, value> pair is $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- Reducers have $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ space
\rightarrow Total length of all values associated with a key is $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- Mappers and reducers run in time polynomial in n
\rightarrow Total space is $\mathrm{O}\left(\mathrm{n}^{2-2 \varepsilon}\right)$
- Since outputs of all mappers have to be stored before shuffling, total size of all <key, value> pairs is $\mathrm{O}\left(\mathrm{n}^{2-2 \varepsilon}\right)$

Definition of
 MapReduce Class (MRC)

$>$ Input: finite sequence <keyi, value $\rangle, n=\sum_{i}\left(\mid\right.$ key $_{i}|+|$ value $\left._{i} \mid\right)$

- Definition: Fix an $\varepsilon>0$. An algorithm in MRCi consists of a sequence of operations $<$ map $_{1}$, red $_{1}, \ldots$, map $_{\mathrm{R}}$, red ${ }_{\mathrm{R}}>$ where:
- Each mapr uses $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ space and time polynomial in n
- Each redr uses $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ space and time polynomial in n
- The total size of the output from mapr is $\mathrm{O}\left(\mathrm{n}^{2-2 \varepsilon}\right)$
> The number of rounds R = O(log ${ }^{j}$)

Related Work

- Feldman et al. SODA '08 also study MapReduce
- Reducers access input as a stream and are restricted to polylog space
> Compare to streaming algorithms
- Goodrich et al '11
- Comparing MapReduce with BSP and PRAM
- Gives algorithms for sorting, convex hulls, linear programming
- Modeling MapReduce
- How and why did we come up with our model?
- [Karloff, Suri, Vassilvitskii SODA 2010]
- MapReduce algorithms for counting triangles in a graph

What do these algorithms say about the model?

- [Suri, Vassilvitskii WWW 2011]
- Open research questions

Clustering Coefficient

- Given $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ unweighted, undirected
$>\mathrm{cc}(\mathrm{v})=$ fraction of v 's neighbors that are neighbors

$$
=\frac{\mid\{(u, w) \in E \mid u \in \Gamma(v) \text { and } w \in \Gamma(v)\} \mid}{\binom{d_{v}}{2}}
$$

= \# triangles incident on v \# possible triangles incident on v

- Computing the clustering coefficient of each node reduces to computing the number of triangles incident on each node.

Related Work

- Estimating the global triangle count using sampling
- [Tsourakakis et al '09]
- Streaming algorithms:
- Estimating global count
- [Coppersmith \& Kumar '04, Buriol et al '06]
- Approximating the number of triangles per node using O(log n) passes
- [Becchetti et al '08]

Why Compute the Clustering Coefficient?

- Network Cohesion: Tightly knit communities foster more trust, social norms
- More likely reputation is known
- [Coleman '88, Portes '98]
- Structural Holes: Individuals benefit from bridging
- Mediator can take ideas from both and innovate
- Apply ideas from one to problems faced by another
- [Burt '04, '07]

Naive Algorithm for Counting
 Triangles: Nodeltr

- Map 1: for each $u \in V$, send $\Gamma(u)$ to a reducer
- Reduce 1: generate all 2-paths of the form $<\mathrm{v}_{1}, \mathrm{v}_{2}$; $\mathrm{u}>$, where $\mathrm{v}_{1}, \mathrm{v}_{2} \in \Gamma(\mathrm{u})$
- Map 2

- Send $<\mathrm{v}_{1}, \mathrm{v}_{2}$; $\mathrm{u}>$ to a reducer,
> Send graph edges $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right.$; \$ $>$ to a reducer
- Reduce 2: input < $\mathrm{v}_{1}, \mathrm{v}_{2} ; \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}, \$$? $>$
- if $\$$ in input, then v_{1}, v_{2} get $\mathrm{k} / 3 \Delta$'s each, and
> u_{1}, \ldots, u_{k} get $1 / 3 \Delta$'s each

Nodeltr \notin MRC

- Reduce 1: generate all 2-paths among pairs in $\mathrm{v}_{1}, \mathrm{v}_{2} \in \Gamma(\mathrm{u})$
> Nodeltr generates $O\left(\sum_{v \in V} d_{v}^{2}\right)$ 2-paths which need to be shuffled
- In a sparse graph, one linear degree node results in $\sim n^{2}$ bits shuffled
- Thus Nodeltr is not in MRC, indicating it is not an efficient algorithm.
- Does this happen on real data?

Nodeltr Performance

Data Set	Nodes	Edges	\# of 2-Paths	Runtime (min)
web- BerkStan	6.9×10^{5}	1.3×10^{7}	5.6×10^{10}	752
as-Skitter	1.7×10^{6}	2.2×10^{7}	3.2×10^{10}	145
Live Journal	4.8×10^{6}	8.6×10^{7}	1.5×10^{10}	59.5
Twitter	4.2×10^{7}	2.4×10^{9}	2.5×10^{14}	$?$

- Massive graphs have heavy tailed degree distributions [Barabasi, Albert '99]
- Nodeltr does not scale, model gets this right

Nodeltr++: Intuition

- Generating 2-paths around high degree nodes is expensive
- Make the lowest degree node "responsible" for counting the triangle
Let \gg be a total order on vertices such that $v \gg u$ if $d_{v}>d_{u}$
> Only generate 2-paths <u,w ; v> if v < u <u,w ; v> and $v \ll w$
> [Schank '07]

Nodeltr++: Definition

- Map 1: if $v \gg u$ emit $<u$; $v>$
- Reduce 1: Input <u; S $\subseteq \Gamma(u)>$ generate all 2-paths of the form $\left\langle v_{1}, v_{2}\right.$; $\left.u\right\rangle$, where $\mathrm{v}_{1}, \mathrm{~V}_{2} \in \mathrm{~S}$
- Map 2 and Reduce 2 are the same as before

\Downarrow
<u,w; v> $\mathrm{O}\left(\mathrm{m}^{1 / 2}\right)$ edges
Thm (Shank '07): O(m²/2) 2-paths will be output

Nodeltr Performance

Data Set	\# of 2-Paths Nodeltr		of 2-Paths	Runtime (min)
Nodeltr + +	Rodeltr	Runtime (min) Nodeltr		
web- BerkStan	5.6×10^{10}	1.8×10^{8}	752	1.8
as-Skitter	3.2×10^{10}	1.9×10^{8}	145	1.9
Live Journal	1.5×10^{10}	1.4×10^{9}	59.5	5.3
Twitter	2.5×10^{14}	3.0×10^{11}	$?$	423

Model indicated shuffling m^{2} bits is too much but $\mathrm{m}^{1.5}$ bits is not

One Round Algorithm: GraphPartition

- Input parameter ρ : partition V into $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\rho}$
- Map 1: Send induced subgraph on $V_{i} \cup V_{j} \cup V_{k}$ to reducer (i,j,k) where $\mathrm{i}<\mathrm{j}<\mathrm{k}$.
- Reduce 1: Count number of triangles in subgraph, weight accordingly

GraphPartition \in MRC 0

- Lemma: The expected size of the input to any reducer is $\mathrm{O}\left(\mathrm{m} / \rho^{2}\right)$.
> $9 / \rho^{2}$ chance a random edge is in a partition
- Lemma: The expected number of bits shuffled is $\mathrm{O}(\mathrm{m} \mathrm{\rho})$.
- $\mathrm{O}\left(\rho^{3}\right)$ partitions, combined with previous lemma
- Thm: For any $\rho<\mathrm{m}^{1 / 2}$ the total amount of work performed by all machines is $\mathrm{O}\left(\mathrm{m}^{3 / 2}\right)$.
- ρ^{3} partitions, $\left(\mathrm{m} / \rho^{2}\right)^{3 / 2}$ complexity per reducer

Runtime of Algorithms

Data Set	Runtime (min) Nodeltr	Runtime (min) Nodeltr++	Runtime (min) GraphPartition
web-BerkStan	752	1.8	1.7
as-Skitter	145	1.9	2.1
Live Journal	59.5	5.3	10.9
Twitter	$?$	423	483

- Model does not differentiate between rounds when they are both constants.

The Curse of the Last Reducer

Nodeltr++

GraphPartition

- LiveJournal data
- Nodeltr++ and GraphPartition deal with skew much better then Nodeltr

What do Algorithms Say About

 MRC?- Model indicated shuffling m^{2} bits is too much but $\mathrm{m}^{1.5}$ bits is not, this was accurate
- Rounds can take a long time
- GraphPartition only had a constant factor blow up in amount shuffled, still took 8 hours on Twitter
- Need to strive for constant round algorithms
- Two round algorithm took as long as one round algorithm
- Streaming on the reducers can be more efficient then loading subgraph into memory
- Differentiating between constants is too fine grained for model

MapReduce: Future Directions

D Lower bounds: show that a certain problem requires $\Omega(\log \mathrm{n})$ rounds

- What is the structure of problems solvable using MapReduce?
- Space-time tradeoffs
- time: number of rounds
> space: number of bits shuffled
- MapReduce is changing, can
 theorists inform its design?

Thank You!

Siddharth Suri

- Yahoo! Research

