BLUE WATERS SUSTAINED PETASCALE COMPUTING

Parallel Computing 2020: Preparing for the Post-Moore Era

Marc Snir

THE (CMOS) WORLD IS ENDING NEXT DECADE

So says the International Technology Roadmap for Semiconductors (ITRS)

End of CMOS?

IN THE LONG TERM (~2017 THROUGH 2024) While power consumption is an urgent challenge, its leakage or static component will become a major industry crisis in the long term, threatening the survival of CMOS technology itself, just as bipolar technology was threatened and eventually disposed of decades ago. [ITRS 2009/2010]

 Unlike the situation at the end of the bipolar era, no technology is waiting in the wings.

Technology Barriers

- New materials
 - ... such as III-V or germanium thin channels on silicon, or even semiconductor nanowires, carbon nanotubes, graphene or others may be needed.
- New structures
 - three-dimensional architecture, such as vertically stackable cell arrays in monolithic integration, with acceptable yield and performance.
- ...These are huge industry challenges to simply imagine and define

 Note: Predicted feature size in 2024 (7.5 nm) = ~32 silicon atoms (Si-Si lattice distance is 0.235 nm)

Economic Barriers

- ROI challenges
 - ... achieving constant/improved ratio of ... cost to throughput might be an insoluble dilemma.
- Rock's Law: Cost of semiconductor chip fabrication plant doubles every four years
 - Current cost is \$7-\$9B
 - Intel's yearly revenue is \$35B
 - Semiconductor industry grows < 20% annually
 - Opportunities for consolidation are limited
- Will take longer to amortize future technology investments
 - Progress stops when manufacturing a twice as dense chip is twice as expensive

Scaling is Plateauing

- Simple scaling (proportional decrease in all parameters) has ended years ago
- Single thread performance is not improving
- Rate of increase in chip density is slowing down in the next few years, for technological and economic reasons
- Silicon will plateau at x10-x100 current performance
 - No alternative technology is ready for prime time

IT as Scaling Slows

- End of Moore's Law is not the end of the Computer Industry
 - It needs not be the end of IT growth
- Mass market (mobile, home): Increasing emphasis on function (or fashion)
- Big iron: Increasing emphasis on *compute efficiency*: Get more results from a given energy and transistor budget.

Compute Efficiency

- Progressively more efficient use of a fixed set of resources (similar to fuel efficiency)
 - More computations per joule
 - More computations per transistor
- A clear understanding of where performance is wasted and continuous progress to reduce "waste"
- A clear distinction between "overheads" computational friction -- and the essential work
 (We are still very far from any fundamental limit)

- HPC is already heavily constrained by low compute efficiency
 - High power consumption, high levels of parallelism
- Exascale research is not only research for the next turn of the crank in supercomputing, but research on how to sustain performance growth in face of semiconductor technology slow-down
 - Essential for continued progress in science, national competitiveness and national security

PETASCALE IN A YEAR

Blue Waters

Blue Waters

- System Attribute
- Vendor
- Processor
- Peak Performance (PF)
- Sustained Performancé (PF)
- Number of Cores/Chip
- Number of Cores
- Amount of Memory (PB)
- Amount of Disk Storage (PB)
- Amount of Archival Storage (PB)
- External Bandwidth (Gbps)
- Water Cooled

Blue Waters IBM **IBM Power7** ~10 >300,000 ~18 >500 100-400 >10 MW

Exascale in 2015 with 20MW [Kogge's Report]

- "Aggressive scaling of Blue Gene Technology" (32nm)
 - 67 MW
 - 223K nodes, 160M cores
 - 3.6 PB memory (1 Byte/1000 flops capacity, 1 Word/50 flops bandwidth)
 - 40 mins MTTI
- A more detailed and realistic study by Kogge indicates power consumption is ~500 MW

Kogge -- Spectrum

- "[A] practical exaflops-scale supercomputer ... might not be possible anytime in the foreseeable future"
- "Building exascale computers ... would require engineers to rethink entirely how they construct number crunchers..."
- "Don't expect to see an [exascale] supercomputer any time soon. But don't give up hope, either."

Exascale Research: Some Fundamental Questions

- Power Complexity
- Communication-optimal computations
- Low entropy computations
- Jitter-resilient computation
- Steady-state computations
- Friction-less architecture
- Self-organizing computations
- Resiliency

Power Complexity

- There is a huge gap between theories on the (quantum) physical constraints of computation and the practice of current computing devices
- Can we develop power complexity models of computations that are relevant to computer engineers?

Communication-Efficient Algorithms: Theory

- Communication in time (registers, memory) and space (buses, links) is, by far, the major source of energy consumption
- Need to stop counting operations and start counting communications
- Need a theory of communication-efficient algorithms (beyond FFT and dense linear algebra)
 - Communication-efficient PDE solvers (understand relation between properties of PDE and communication needs)
- Need to measure correctly inherent communication costs at the algorithm level
 - Temporal/spatial/processor locality: second order statistics on data & control dependencies

Communication-Efficient Computations: Practice

- Need better benchmarks to sample multivariate distributions (apply Optimal Sampling Theory?)
- Need communication-focused programming models & environments
 - User can analyze and control cost of communications incurred during program execution (volume, locality)
- Need productivity environments for performanceoriented programmers

Low-Entropy Communication

- Communication can be much cheaper if "known in advance"
 - Memory access overheads, latency hiding, reduced arbitration cost, bulk transfers (e.g., optical switches)
 - ... Bulk mail vs. express mail
- Current HW/SW architectures take little advantage of such knowledge
 - Need architecture/software/algorithm research
- CS is lacking a good algorithmic theory of entropy
 - Need theory, benchmarks, metrics

Jitter-Resilient Computation

- Expect increased variance in the compute speed of different components in a large machine
 - Power management
 - Error correction
 - Asynchronous system activities
 - Variance in application
- Need variance-tolerant applications
 - Bad: frequent barriers, frequent reductions
 - Good: 2-phase collectives, double-buffering
- Need theory and metrics
- Need new variance-tolerant algorithms
- Need automatic transformations for increased variance tolerance

Steady-State Computation

- Each subsystem of a large system (CPU, memory, interconnect, disk) has low average utilization during a long computation
- Each subsystem is the performance bottleneck during part of the computation
- Utilization is not steady-state hence need to over-provision each subsystem.
- Proposed solution A: power management, to reduce subsystem consumption when not on critical path
 - Hard (in theory and in practice)
- Proposed solution B: Techniques for steady-state computation
 - E.g., communication/computation overlap
- Need research in Software (programming models, compilers, run-time), and architecture

- Current HW/SW architectures have developed multiple, rigid levels of abstraction (ISA, VM, APIs, languages...)
 - Facilitates SW development but energy is lost at layer matching
- Flexible specialization enables to regain lost performance
 - Inlining, on-line compilation, code morphing
 - Similar techniques are needed for OS layers

Self-Organizing Computations

- Hardware continuously changes (failures, power management)
- Algorithms have more dynamic behavior (multigrid, multiscale – adapt to evolution of simulated system)
- Mapping of computation to HW needs to be continuously adjusted
- Too hard to do in a centralized manner -> Need distributed, hill climbing algorithms

- HW for fault correction (and possibly fault detection) may be too expensive (consumes too much power)
 - and is source of jitter
- Current global checkpoint/restart algorithms cannot cope with MTBF of few hours or less
- Need SW (language, compiler, runtime) support for error compartmentalization
 - Catch error before it propagates
- May need fault-tolerant algorithms
 - Need new complexity theory

- The end of Moore's era will change in fundamental ways the IT industry and CS research
 - A much stronger emphasis on compute efficiency
 - A more systematic and rigorous study of sources of inefficiencies
- The quest for exascale at reasonable power budget is the first move into this new domain

