Mapreduce With Parallelizable Reduce

S. Muthu Muthukrishnan

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 At a deliberately high level, we know the MapReduce system.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

▶ There is nice PRAM theory of parallel algorithms.

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- ▶ There is nice PRAM theory of parallel algorithms.
 - ▶ NC, prefix sums, list ranking, and more.

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- ▶ There is nice PRAM theory of parallel algorithms.
 - ▶ NC, prefix sums, list ranking, and more.
- ▶ Goal: Develop a useful theory of MapReduce algorithms.

ション ふゆ マ キャット キャット しょう

- At a deliberately high level, we know the MapReduce system.
 - Parallel. Map and Reduce functions. Used when data is large. Changing system.
- ▶ There is nice PRAM theory of parallel algorithms.
 - ▶ NC, prefix sums, list ranking, and more.
- ▶ Goal: Develop a useful theory of MapReduce algorithms.
 - An algorithmus role. Interesting problems, algorithms. Bridge from the other side.

• Prefix sum in O(1) rounds.

• Prefix sum in O(1) rounds.

• Problem: $A[1, \ldots, n] \Rightarrow PA[1, \cdots, n]$ where $PA[i] = \sum_{j \leq i} A[j].$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Prefix sum in O(1) rounds.

- ▶ Problem: $A[1, ..., n] \Rightarrow PA[1, ..., n]$ where $PA[i] = \sum_{j \le i} A[j]$.
- Solution:
 - Assign $A[i\sqrt{n}+1,\cdots,(i+1)\sqrt{n}]$ to key *i*.

ション ふゆ マ キャット キャット しょう

• Prefix sum in O(1) rounds.

- ▶ Problem: $A[1, ..., n] \Rightarrow PA[1, ..., n]$ where $PA[i] = \sum_{j \le i} A[j].$
- Solution:
 - Assign $A[i\sqrt{n}+1,\cdots,(i+1)\sqrt{n}]$ to key *i*.

うして ふゆう ふほう ふほう ふしつ

▶ Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i\sqrt{n+1}}^{(i+1)\sqrt{n}} A[j]$. Doable?

• Prefix sum in O(1) rounds.

- ▶ Problem: $A[1, ..., n] \Rightarrow PA[1, ..., n]$ where $PA[i] = \sum_{j \le i} A[j].$
- Solution:
 - Assign $A[i\sqrt{n}+1,\cdots,(i+1)\sqrt{n}]$ to key *i*.
 - ▶ Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i\sqrt{n+1}}^{(i+1)\sqrt{n}} A[j]$. Doable?
 - Solve problem for key i with PB[i-1]. Doable?

うして ふゆう ふほう ふほう ふしつ

• Prefix sum in O(1) rounds.

- ▶ Problem: $A[1, ..., n] \Rightarrow PA[1, ..., n]$ where $PA[i] = \sum_{j \le i} A[j].$
- Solution:
 - Assign $A[i\sqrt{n}+1,\cdots,(i+1)\sqrt{n}]$ to key *i*.
 - ▶ Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i] = \sum_{i\sqrt{n+1}}^{(i+1)\sqrt{n}} A[j]$. Doable?
 - Solve problem for key i with PB[i-1]. Doable?

- List ranking in O(1) rounds?
 - Some graph algorithms in O(1) rounds recently.

SIROCCO Challenge

▶ Problem: Given graph G = (V, E), count the number of triangles.¹

¹For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

SIROCCO Challenge

- ▶ Problem: Given graph G = (V, E), count the number of triangles.¹
- Solution:
 - For each edge (u, v), generate a tuple (u, v, 0).
 - For each vertex v and for each pair of neighbors x, z of v, generate a tuple (x, z, 1).
 - ▶ Presence of both 0 and 1 tuple for an edge is a triangle.

¹For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

SIROCCO Challenge

- ▶ Problem: Given graph G = (V, E), count the number of triangles.¹
- Solution:
 - For each edge (u, v), generate a tuple (u, v, 0).
 - ▶ For each vertex v and for each pair of neighbors x, z of v, generate a tuple (x, z, 1).
 - Presence of both 0 and 1 tuple for an edge is a triangle.
- Solution: The number of triangles is Σ_iλ_i³/₆ where λ_i are eigenvalues of adjacency matrix A of G in sorted order.
 - A_{ii}^3 is the number of triangles involving *i*.
 - ▶ The trace is 6 times the number of triangles.
 - If λ is eigenvalue of A, i.e., $Ax = \lambda x$, then λ^3 is eigenvalue of A^3 .
 - ▶ In practice, computing top few eigenvalues suffices.

¹For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

Eigenvalue Estimation

A is a $n \times n$ real valued matrix.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Lanczos method.

A is a $n \times n$ real valued matrix.

- Lanczos method.
- Sketches. Ar for pseudo random n × d vector r, d << n. Will O(nd) sketch fit into one machine?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Special Case

Motivation: Logs processing.

x = inputrecord; x-squared = x * x; aggregator: table sum; emit aggregator <- x-squared;</pre>

MUD Algorithm $m = (\Phi, \oplus, \eta)$.

- Local function $\Phi: \Sigma \to Q$ maps input item to a message.
- Aggregator ⊕: Q × Q → Q maps two messages to a single message.

- ► Post-processing operator η : Q → Σ produces the final output, applying m_T(x).
- Computes a function f if $\eta(m_{\mathcal{T}}(\cdot)) = f$ for all trees \mathcal{T} .

MUD Examples

$$egin{aligned} \Phi(x) &= \langle x, x
angle \ \oplus(\langle a_1, b_1
angle, \langle a_2, b_2
angle) &= \langle \min(a_1, a_2), \max(b_1, b_2)
angle \ \eta(\langle a, b
angle) &= b-a \end{aligned}$$

Figure: mud algorithm for computing the total span (left)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

MUD Examples

$$egin{aligned} \Phi(x) &= \langle x, h(x), 1
angle \ \oplus(\langle a_1, h(a_1), c_1
angle, \langle a_2, h(a_2), c_2
angle) \ &= \left\{egin{aligned} \langle a_i, h(a_i), c_i
angle & ext{if } h(a_i) < h(a_j) \ \langle a_1, h(a_1), c_1 + c_2
angle & ext{otherwise} \end{aligned}
ight. \ &\eta(\langle a, b, c
angle) = a ext{ if } c = 1 \end{aligned}$$

Figure: Mud algorithms for computing a uniform random sample of the unique items in a set (right). Here h is an approximate minwise hash function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Streaming

- streaming algorithm $s = (\sigma, \eta)$.
- operator $\sigma: Q imes \Sigma o Q$
- $\eta: Q \to \Sigma$ converts the final state to the output.
- On input x ∈ Σⁿ, the streaming algorithm computes f = η(s⁰(x)), where 0 is the starting state, and s^q(x) = σ(σ(...σ(σ(q, x₁), x₂),..., x_{k-1}), x_k).

(日) (日) (日) (日) (日) (日) (日) (日)

• Communication complexity is $\log |Q|$

For a mud algorithm m = (Φ, ⊕, η), there is a streaming algorithm s = (σ, η) of the same complexity with same output, by setting σ(q, x) = ⊕(q, Φ(x)).

ション ふゆ マ キャット マックシン

For a mud algorithm m = (Φ, ⊕, η), there is a streaming algorithm s = (σ, η) of the same complexity with same output, by setting σ(q, x) = ⊕(q, Φ(x)).

Central question: Can MUD simulate streaming?

- For a mud algorithm m = (Φ, ⊕, η), there is a streaming algorithm s = (σ, η) of the same complexity with same output, by setting σ(q, x) = ⊕(q, Φ(x)).
- Central question: Can MUD simulate streaming?
 - Count the occurrences of the first odd number on the stream.

- For a mud algorithm m = (Φ, ⊕, η), there is a streaming algorithm s = (σ, η) of the same complexity with same output, by setting σ(q, x) = ⊕(q, Φ(x)).
- Central question: Can MUD simulate streaming?
 - Count the occurrences of the first odd number on the stream.
 - Symmetric problems? Symmetric index problem.

 $S = (a, 1, x_1, p), (a, 2, x_2, p), \dots, (a, 2, x_n, p),$ (b, 1, y₁, q), (b, 2, y₂, q), \dots, (b, 2, y_n, q).

Additionally, we have $x_q = y_p$. Compute function $f(S) = x_q$.

For any symmetric function $f: \Sigma^n \to \Sigma$ computed by a g(n)-space, c(n)-communication streaming algorithm (σ, η) , with $g(n) = \Omega(\log n)$ and $c(n) = \Omega(\log n)$,

うして ふゆう ふほう ふほう ふしつ

For any symmetric function $f: \Sigma^n \to \Sigma$ computed by a g(n)-space, c(n)-communication streaming algorithm (σ, η) , with $g(n) = \Omega(\log n)$ and $c(n) = \Omega(\log n)$,

there exists a O(c(n))-communication, $O(g^2(n))$ -space mud algorithm (Φ, \oplus, η) that also computes f.

MUD vs Streaming: 2 parties

► x_A and x_B are partitions of the input sequence x sent to Alice and Bob.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MUD vs Streaming: 2 parties

- ► x_A and x_B are partitions of the input sequence x sent to Alice and Bob.
- ► Alice runs the streaming algorithm on her input sequence to produce the state q_A = s⁰(x_A), and sends this to Carol. Similarly, Bob sends q_B = s⁰(x_B) to Carol.

MUD vs Streaming: 2 parties

- ► x_A and x_B are partitions of the input sequence x sent to Alice and Bob.
- ► Alice runs the streaming algorithm on her input sequence to produce the state q_A = s⁰(x_A), and sends this to Carol. Similarly, Bob sends q_B = s⁰(x_B) to Carol.
- ► Carol receives the states q_A and q_B, which contain the sizes n_A and n_B of the input sequences x_A and x_B, and needs to calculate f = s⁰(x_A||x_B).

2 Parties Communication

▶ Carol finds sequences \mathbf{x}'_A and \mathbf{x}'_B of length n_A and n_B such that $q_A = s^0(\mathbf{x}'_A)$ and $q_B = s^0(\mathbf{x}'_B)$.

ション ふゆ マ キャット マックシン

2 Parties Communication

- ▶ Carol finds sequences \mathbf{x}'_A and \mathbf{x}'_B of length n_A and n_B such that $q_A = s^0(\mathbf{x}'_A)$ and $q_B = s^0(\mathbf{x}'_B)$.
- Carol then outputs $\eta(s^0(\mathbf{x}'_A \cdot \mathbf{x}'_B))$.

$$\eta(s^{0}(\mathbf{x}'_{A} \cdot \mathbf{x}'_{B})) = \eta(s^{0}(\mathbf{x}_{A} \cdot \mathbf{x}'_{B}))$$

$$= \eta(s^{0}(\mathbf{x}'_{B} \cdot \mathbf{x}_{A}))$$

$$= \eta(s^{0}(\mathbf{x}_{B} \cdot \mathbf{x}_{A}))$$

$$= \eta(s^{0}(\mathbf{x}_{A} \cdot \mathbf{x}_{B}))$$

$$= f(\mathbf{x}_{A} \cdot \mathbf{x}_{B})$$

$$= f(\mathbf{x}).$$

ション ふゆ マ キャット キャット しょう

Non-deterministic simulation:

- Non-deterministic simulation:
 - ▶ First, guess the symbols of x'_A one at a time, simulating the streaming algorithm s⁰(x'_A) on the guess.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

- Non-deterministic simulation:
 - First, guess the symbols of x'_A one at a time, simulating the streaming algorithm s⁰(x'_A) on the guess. If after n_A guessed symbols we have s⁰(x'_A) ≠ q_A, reject this branch.

Non-deterministic simulation:

First, guess the symbols of x'_A one at a time, simulating the streaming algorithm s⁰(x'_A) on the guess. If after n_A guessed symbols we have s⁰(x'_A) ≠ q_A, reject this branch. Then, guess the symbols of x'_B, simulating (in parallel) s⁰(x'_B) and s^{q_A}(x'_B).

- Non-deterministic simulation:
 - First, guess the symbols of x'_A one at a time, simulating the streaming algorithm s⁰(x'_A) on the guess. If after n_A guessed symbols we have s⁰(x'_A) ≠ q_A, reject this branch. Then, guess the symbols of x'_B, simulating (in parallel) s⁰(x'_B) and s^{q_A}(x'_B). If after n_B steps we have s⁰(x'_B) ≠ q_B, reject this branch; otherwise, output q_C = s^{q_A}(x'_B).

- ▶ This procedure is a non-deterministic, O(g(n))-space algorithm for computing a valid q_C.
- ▶ By Savitch's theorem, it follows that there is a deterministic, g²(n)-space algorithm.
- Simulation time is superpolynomial.

Proof

- ▶ Finish the proof for arbitrary computation tree inductively.
- Extends to streaming algorithms for approximating f that work by computing some other function g exactly over the stream, for example, sketch-based algorithms that maintain c_i = (x, v_i) where x is the input vector and some v_i. Public randomness.

▶ Doesn't extend to randomized algorithms with private randomness, partial functions, etc.

Multiple Keys

► Any N-processor, M-memory, T-time EREW-PRAM algorithm which has a log(N + M)-bit word in every memory location, can be simulated by a O(T)-round, (N + M)-key mud algorithm with communication complexity O(log(N + M))

bits per key.

In particular, any problem in class NC has a polylog(n)-round, poly(n)-key mud algorithm with communication complexity O(log(n)) bits per key.

Concluding Remarks

 Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, Zoya Svitkina: On distributing symmetric streaming computations. SODA 2008: 710-719