Mapreduce With Parallelizable Reduce

S. Muthu Muthukrishnan

Some Premises

- At a deliberately high level, we know the MapReduce system.

Some Premises

- At a deliberately high level, we know the MapReduce system.
- Parallel. Map and Reduce functions. Used when data is large. Changing system.

Some Premises

- At a deliberately high level, we know the MapReduce system.
- Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.

Some Premises

- At a deliberately high level, we know the MapReduce system.
- Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
- NC, prefix sums, list ranking, and more.

Some Premises

- At a deliberately high level, we know the MapReduce system.
- Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
- NC, prefix sums, list ranking, and more.
- Goal: Develop a useful theory of MapReduce algorithms.

Some Premises

- At a deliberately high level, we know the MapReduce system.
- Parallel. Map and Reduce functions. Used when data is large. Changing system.
- There is nice PRAM theory of parallel algorithms.
- NC, prefix sums, list ranking, and more.
- Goal: Develop a useful theory of MapReduce algorithms.
- An algorithmus role. Interesting problems, algorithms. Bridge from the other side.

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
- Problem: $A[1, \ldots, n] \Rightarrow P A[1, \cdots, n]$ where $P A[i]=\sum_{j \leq i} A[j]$.

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
- Problem: $A[1, \ldots, n] \Rightarrow P A[1, \cdots, n]$ where $P A[i]=\sum_{j \leq i} A[j]$.
- Solution:
- Assign $A[i \sqrt{n}+1, \cdots,(i+1) \sqrt{n}]$ to key i.

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
- Problem: $A[1, \ldots, n] \Rightarrow P A[1, \cdots, n]$ where $P A[i]=\sum_{j \leq i} A[j]$.
- Solution:
- Assign $A[i \sqrt{n}+1, \cdots,(i+1) \sqrt{n}]$ to key i.
- Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i]=\sum_{i \sqrt{n}+1}^{(i+1) \sqrt{n}} A[j]$. Doable?

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
- Problem: $A[1, \ldots, n] \Rightarrow P A[1, \cdots, n]$ where $P A[i]=\sum_{j \leq i} A[j]$.
- Solution:
- Assign $A[i \sqrt{n}+1, \cdots,(i+1) \sqrt{n}]$ to key i.
- Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i]=\sum_{i \sqrt{n}+1}^{(i+1) \sqrt{n}} A[j]$. Doable?
- Solve problem for key i with $P B[i-1]$. Doable?

Thoughts Circa 2006

- Prefix sum in $O(1)$ rounds.
- Problem: $A[1, \ldots, n] \Rightarrow P A[1, \cdots, n]$ where $P A[i]=\sum_{j \leq i} A[j]$.
- Solution:
- Assign $A[i \sqrt{n}+1, \cdots,(i+1) \sqrt{n}]$ to key i.
- Solve problem on $B[1, \sqrt{n}]$ with one proc, $B[i]=\sum_{i \sqrt{n}+1}^{(i+1) \sqrt{n}} A[j]$. Doable?
- Solve problem for key i with $P B[i-1]$. Doable?
- List ranking in $O(1)$ rounds?
- Some graph algorithms in $O(1)$ rounds recently.

SIROCCO Challenge

- Problem: Given graph $G=(V, E)$, count the number of triangles. ${ }^{1}$

[^0]
SIROCCO Challenge

- Problem: Given graph $G=(V, E)$, count the number of triangles. ${ }^{1}$
- Solution:
- For each edge (u, v), generate a tuple $(u, v, 0)$.
- For each vertex v and for each pair of neighbors x, z of v, generate a tuple $(x, z, 1)$.
- Presence of both 0 and 1 tuple for an edge is a triangle.

[^1]
SIROCCO Challenge

- Problem: Given graph $G=(V, E)$, count the number of triangles. ${ }^{1}$
- Solution:
- For each edge (u, v), generate a tuple $(u, v, 0)$.
- For each vertex v and for each pair of neighbors x, z of v, generate a tuple $(x, z, 1)$.
- Presence of both 0 and 1 tuple for an edge is a triangle.
- Solution: The number of triangles is $\frac{\sum_{i} \lambda_{i}^{3}}{6}$ where λ_{i} are eigenvalues of adjacency matrix A of G in sorted order.
- $A_{i i}^{3}$ is the number of triangles involving i.
- The trace is 6 times the number of triangles.
- If λ is eigenvalue of A, ie., $A x=\lambda x$, then λ^{3} is eigenvalue of A^{3}.
- In practice, computing top few eigenvalues suffices.

[^2]
Eigenvalue Estimation

A is a $n \times n$ real valued matrix.

- Lanczos method.

Eigenvalue Estimation

A is a $n \times n$ real valued matrix.

- Lanczos method.
- Sketches. Ar for pseudo random $n \times d$ vector $r, d \ll n$. Will $O(n d)$ sketch fit into one machine?

Special Case

Motivation: Logs processing.

$$
\begin{aligned}
& \mathrm{x}=\text { inputrecord; } \\
& \mathrm{x} \text {-squared }=\mathrm{x}^{*} \mathrm{x} ; \\
& \text { aggregator: table sum; } \\
& \text { emit aggregator <- x-squared; }
\end{aligned}
$$

MUD Algorithm $m=(\Phi, \oplus, \eta)$.

- Local function $\Phi: \Sigma \rightarrow Q$ maps input item to a message.
- Aggregator $\oplus: Q \times Q \rightarrow Q$ maps two messages to a single message.
- Post-processing operator $\eta: Q \rightarrow \Sigma$ produces the final output, applying $m_{\mathcal{T}}(\mathrm{x})$.
- Computes a function f if $\eta\left(m_{\mathcal{T}}(\cdot)\right)=f$ for all trees \mathcal{T}.

MUD Examples

$$
\begin{aligned}
& \Phi(x)=\langle x, x\rangle \\
& \oplus\left(\left\langle a_{1}, b_{1}\right\rangle,\left\langle a_{2}, b_{2}\right\rangle\right)=\left\langle\min \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right\rangle \\
& \eta(\langle a, b\rangle)=b-a
\end{aligned}
$$

Figure: mud algorithm for computing the total span (left)

MUD Examples

$$
\begin{aligned}
& \Phi(x)=\langle x, h(x), 1\rangle \\
& \oplus\left(\left\langle a_{1}, h\left(a_{1}\right), c_{1}\right\rangle,\left\langle a_{2}, h\left(a_{2}\right), c_{2}\right\rangle\right) \\
& \quad= \begin{cases}\left\langle a_{i}, h\left(a_{i}\right), c_{i}\right\rangle & \text { if } h\left(a_{i}\right)<h\left(a_{j}\right) \\
\left\langle a_{1}, h\left(a_{1}\right), c_{1}+c_{2}\right\rangle & \text { otherwise }\end{cases} \\
& \eta(\langle a, b, c\rangle)=a \text { if } c=1
\end{aligned}
$$

Figure: Mud algorithms for computing a uniform random sample of the unique items in a set (right). Here h is an approximate minwise hash function.

Streaming

- streaming algorithm $s=(\sigma, \eta)$.
- operator $\sigma: Q \times \Sigma \rightarrow Q$
- $\eta: Q \rightarrow \Sigma$ converts the final state to the output.
- On input $\mathrm{x} \in \Sigma^{n}$, the streaming algorithm computes $f=\eta\left(s^{0}(\mathrm{x})\right)$, where 0 is the starting state, and $s^{q}(\mathrm{x})=\sigma\left(\sigma\left(\ldots \sigma\left(\sigma\left(q, x_{1}\right), x_{2}\right), \ldots, x_{k-1}\right), x_{k}\right)$.
- Communication complexity is $\log |Q|$

MUD vs Streaming

- For a mud algorithm $m=(\Phi, \oplus, \eta)$, there is a streaming algorithm $s=(\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x)=\oplus(q, \Phi(x))$.

MUD vs Streaming

- For a mud algorithm $m=(\Phi, \oplus, \eta)$, there is a streaming algorithm $s=(\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x)=\oplus(q, \Phi(x))$.
- Central question: Can MUD simulate streaming?

MUD vs Streaming

- For a mud algorithm $m=(\Phi, \oplus, \eta)$, there is a streaming algorithm $s=(\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x)=\oplus(q, \Phi(x))$.
- Central question: Can MUD simulate streaming?
- Count the occurrences of the first odd number on the stream.

MUD vs Streaming

- For a mud algorithm $m=(\Phi, \oplus, \eta)$, there is a streaming algorithm $s=(\sigma, \eta)$ of the same complexity with same output, by setting $\sigma(q, x)=\oplus(q, \Phi(x))$.
- Central question: Can MUD simulate streaming?
- Count the occurrences of the first odd number on the stream.
- Symmetric problems? Symmetric index problem.

$$
\begin{aligned}
S= & \left(\mathrm{a}, 1, x_{1}, p\right),\left(\mathrm{a}, 2, x_{2}, p\right), \ldots,\left(\mathrm{a}, 2, x_{n}, p\right) \\
& \left(\mathrm{b}, 1, y_{1}, q\right),\left(\mathrm{b}, 2, y_{2}, q\right), \ldots,\left(\mathrm{b}, 2, y_{n}, q\right) .
\end{aligned}
$$

Additionally, we have $x_{q}=y_{p}$. Compute function $f(S)=x_{q}$.

MUD vs Streaming

For any symmetric function $f: \Sigma^{n} \rightarrow \Sigma$ computed by a $g(n)$-space, $c(n)$-communication streaming algorithm (σ, η), with $g(n)=\Omega(\log n)$ and $c(n)=\Omega(\log n)$,

MUD vs Streaming

For any symmetric function $f: \Sigma^{n} \rightarrow \Sigma$ computed by a $g(n)$-space, $c(n)$-communication streaming algorithm (σ, η), with $g(n)=\Omega(\log n)$ and $c(n)=\Omega(\log n)$,
there exists a $O(c(n))$-communication, $O\left(g^{2}(n)\right)$-space mud algorithm (Φ, \oplus, η) that also computes f.

MUD vs Streaming: 2 parties

- \mathbf{x}_{A} and \mathbf{x}_{B} are partitions of the input sequence x sent to Alice and Bob.

MUD vs Streaming: 2 parties

- x_{A} and x_{B} are partitions of the input sequence x sent to Alice and Bob.
- Alice runs the streaming algorithm on her input sequence to produce the state $q_{A}=s^{0}\left(\mathbf{x}_{A}\right)$, and sends this to Carol. Similarly, Bob sends $q_{B}=s^{0}\left(\mathbf{x}_{B}\right)$ to Carol.

MUD vs Streaming: 2 parties

- x_{A} and x_{B} are partitions of the input sequence x sent to Alice and Bob.
- Alice runs the streaming algorithm on her input sequence to produce the state $q_{A}=s^{0}\left(\mathrm{x}_{A}\right)$, and sends this to Carol. Similarly, Bob sends $q_{B}=s^{0}\left(\mathbf{x}_{B}\right)$ to Carol.
- Carol receives the states q_{A} and q_{B}, which contain the sizes n_{A} and n_{B} of the input sequences \mathbf{x}_{A} and \mathbf{x}_{B}, and needs to calculate $f=s^{0}\left(\mathbf{x}_{A} \| \mathbf{x}_{B}\right)$.

2 Parties Communication

- Carol finds sequences \mathbf{x}_{A}^{\prime} and \mathbf{x}_{B}^{\prime} of length n_{A} and n_{B} such that $q_{A}=s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ and $q_{B}=s^{0}\left(\mathbf{x}_{B}^{\prime}\right)$.

2 Parties Communication

- Carol finds sequences x_{A}^{\prime} and x_{B}^{\prime} of length n_{A} and n_{B} such that $q_{A}=s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ and $q_{B}=s^{0}\left(\mathbf{x}_{B}^{\prime}\right)$.
- Carol then outputs $\eta\left(s^{0}\left(\mathbf{x}_{A}^{\prime} \cdot \mathbf{x}_{B}^{\prime}\right)\right)$.

$$
\begin{aligned}
\eta\left(s^{0}\left(\mathbf{x}_{A}^{\prime} \cdot \mathbf{x}_{B}^{\prime}\right)\right) & =\eta\left(s^{0}\left(\mathbf{x}_{A} \cdot \mathbf{x}_{B}^{\prime}\right)\right) \\
& =\eta\left(s^{0}\left(\mathbf{x}_{B}^{\prime} \cdot \mathbf{x}_{A}\right)\right) \\
& =\eta\left(s^{0}\left(\mathbf{x}_{B} \cdot \mathbf{x}_{A}\right)\right) \\
& =\eta\left(s^{0}\left(\mathbf{x}_{A} \cdot \mathbf{x}_{B}\right)\right) \\
& =f\left(\mathbf{x}_{A} \cdot \mathbf{x}_{B}\right) \\
& =f(\mathbf{x})
\end{aligned}
$$

Space Efficient 2 Party Communication

- Non-deterministic simulation:

Space Efficient 2 Party Communication

- Non-deterministic simulation:
- First, guess the symbols of x_{A}^{\prime} one at a time, simulating the streaming algorithm $s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ on the guess.

Space Efficient 2 Party Communication

- Non-deterministic simulation:
- First, guess the symbols of x_{A}^{\prime} one at a time, simulating the streaming algorithm $s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ on the guess. If after n_{A} guessed symbols we have $s^{0}\left(\mathbf{x}_{A}^{\prime}\right) \neq q_{A}$, reject this branch.

Space Efficient 2 Party Communication

- Non-deterministic simulation:
- First, guess the symbols of x_{A}^{\prime} one at a time, simulating the streaming algorithm $s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ on the guess. If after n_{A} guessed symbols we have $s^{0}\left(\mathbf{x}_{A}^{\prime}\right) \neq q_{A}$, reject this branch. Then, guess the symbols of x_{B}^{\prime}, simulating (in parallel) $s^{0}\left(\mathbf{x}_{B}^{\prime}\right)$ and $s^{q_{A}}\left(\mathbf{x}_{B}^{\prime}\right)$.

Space Efficient 2 Party Communication

- Non-deterministic simulation:
- First, guess the symbols of x_{A}^{\prime} one at a time, simulating the streaming algorithm $s^{0}\left(\mathbf{x}_{A}^{\prime}\right)$ on the guess. If after n_{A} guessed symbols we have $s^{0}\left(\mathrm{x}_{A}^{\prime}\right) \neq q_{A}$, reject this branch. Then, guess the symbols of x_{B}^{\prime}, simulating (in parallel) $s^{0}\left(\mathbf{x}_{B}^{\prime}\right)$ and $s^{q_{A}}\left(\mathbf{x}_{B}^{\prime}\right)$. If after n_{B} steps we have $s^{0}\left(\mathbf{x}_{B}^{\prime}\right) \neq q_{B}$, reject this branch; otherwise, output $q_{C}=s^{q_{A}}\left(\mathbf{x}_{B}^{\prime}\right)$.
- This procedure is a non-deterministic, $O(g(n))$-space algorithm for computing a valid q_{C}.
- By Savitch's theorem, it follows that there is a deterministic, $g^{2}(n)$-space algorithm.
- Simulation time is superpolynomial.

Proof

- Finish the proof for arbitrary computation tree inductively.
- Extends to streaming algorithms for approximating f that work by computing some other function g exactly over the stream, for example, sketch-based algorithms that maintain $c_{i}=\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle$ where x is the input vector and some \mathbf{v}_{i}. Public randomness.
- Doesn't extend to randomized algorithms with private randomness, partial functions, etc.

Multiple Keys

- Any N-processor, M-memory, T-time EREW-PRAM algorithm which has a $\log (N+M)$-bit word in every memory location, can be simulated by a $O(T)$-round, $(N+M)$-key mud algorithm with communication complexity $O(\log (N+M))$ bits per key.
- In particular, any problem in class NC has a polylog(n)-round, poly (n)-key mud algorithm with communication complexity $O(\log (n))$ bits per key.

Concluding Remarks

- Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, Zoya Svitkina: On distributing symmetric streaming computations. SODA 2008: 710-719

[^0]: ${ }^{1}$ For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

[^1]: ${ }^{1}$ For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

[^2]: ${ }^{1}$ For ex, see. Fast Counting of Triangles in Large Real Networks without counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.

