
Mapreduce With Parallelizable Reduce

S. Muthu Muthukrishnan



Some Premises

I At a deliberately high level, we know the MapReduce
system.

I Parallel. Map and Reduce functions. Used when data is
large. Changing system.

I There is nice PRAM theory of parallel algorithms.
I NC, prefix sums, list ranking, and more.

I Goal: Develop a useful theory of MapReduce algorithms.
I An algorithmus role. Interesting problems, algorithms.

Bridge from the other side.



Some Premises

I At a deliberately high level, we know the MapReduce
system.
I Parallel. Map and Reduce functions. Used when data is

large. Changing system.

I There is nice PRAM theory of parallel algorithms.
I NC, prefix sums, list ranking, and more.

I Goal: Develop a useful theory of MapReduce algorithms.
I An algorithmus role. Interesting problems, algorithms.

Bridge from the other side.



Some Premises

I At a deliberately high level, we know the MapReduce
system.
I Parallel. Map and Reduce functions. Used when data is

large. Changing system.
I There is nice PRAM theory of parallel algorithms.

I NC, prefix sums, list ranking, and more.
I Goal: Develop a useful theory of MapReduce algorithms.

I An algorithmus role. Interesting problems, algorithms.
Bridge from the other side.



Some Premises

I At a deliberately high level, we know the MapReduce
system.
I Parallel. Map and Reduce functions. Used when data is

large. Changing system.
I There is nice PRAM theory of parallel algorithms.

I NC, prefix sums, list ranking, and more.

I Goal: Develop a useful theory of MapReduce algorithms.
I An algorithmus role. Interesting problems, algorithms.

Bridge from the other side.



Some Premises

I At a deliberately high level, we know the MapReduce
system.
I Parallel. Map and Reduce functions. Used when data is

large. Changing system.
I There is nice PRAM theory of parallel algorithms.

I NC, prefix sums, list ranking, and more.
I Goal: Develop a useful theory of MapReduce algorithms.

I An algorithmus role. Interesting problems, algorithms.
Bridge from the other side.



Some Premises

I At a deliberately high level, we know the MapReduce
system.
I Parallel. Map and Reduce functions. Used when data is

large. Changing system.
I There is nice PRAM theory of parallel algorithms.

I NC, prefix sums, list ranking, and more.
I Goal: Develop a useful theory of MapReduce algorithms.

I An algorithmus role. Interesting problems, algorithms.
Bridge from the other side.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.

I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where
PA[i ] =

P
j�i A[j ].

I Solution:
I Assign A[i

p
n + 1; � � � ; (i + 1)

p
n ] to key i .

I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?
I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.
I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where

PA[i ] =
P

j�i A[j ].

I Solution:
I Assign A[i

p
n + 1; � � � ; (i + 1)

p
n ] to key i .

I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?
I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.
I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where

PA[i ] =
P

j�i A[j ].
I Solution:

I Assign A[i
p

n + 1; � � � ; (i + 1)
p

n ] to key i .

I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?
I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.
I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where

PA[i ] =
P

j�i A[j ].
I Solution:

I Assign A[i
p

n + 1; � � � ; (i + 1)
p

n ] to key i .
I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?

I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.
I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where

PA[i ] =
P

j�i A[j ].
I Solution:

I Assign A[i
p

n + 1; � � � ; (i + 1)
p

n ] to key i .
I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?
I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



Thoughts Circa 2006

I Prefix sum in O(1) rounds.
I Problem: A[1; : : : ;n ] ) PA[1; � � � ;n ] where

PA[i ] =
P

j�i A[j ].
I Solution:

I Assign A[i
p

n + 1; � � � ; (i + 1)
p

n ] to key i .
I Solve problem on B [1;

p
n ] with one proc,

B [i ] =
P(i+1)

p
n

i
p

n+1 A[j ]. Doable?
I Solve problem for key i with PB [i � 1]. Doable?

I List ranking in O(1) rounds?
I Some graph algorithms in O(1) rounds recently.



SIROCCO Challenge

I Problem: Given graph G = (V ;E), count the number of
triangles.1

I Solution:
I For each edge (u ; v), generate a tuple (u ; v ; 0).
I For each vertex v and for each pair of neighbors x ; z of v ,

generate a tuple (x ; z ; 1).
I Presence of both 0 and 1 tuple for an edge is a triangle.

I Solution: The number of triangles is
P

i �
3
i

6 where �i are
eigenvalues of adjacency matrix A of G in sorted order.
I A3

ii is the number of triangles involving i .
I The trace is 6 times the number of triangles.
I If � is eigenvalue of A, ie., Ax = �x , then �3 is eigenvalue

of A3.
I In practice, computing top few eigenvalues suffices.

1For ex, see. Fast Counting of Triangles in Large Real Networks without
counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.



SIROCCO Challenge

I Problem: Given graph G = (V ;E), count the number of
triangles.1

I Solution:
I For each edge (u ; v), generate a tuple (u ; v ; 0).
I For each vertex v and for each pair of neighbors x ; z of v ,

generate a tuple (x ; z ; 1).
I Presence of both 0 and 1 tuple for an edge is a triangle.

I Solution: The number of triangles is
P

i �
3
i

6 where �i are
eigenvalues of adjacency matrix A of G in sorted order.
I A3

ii is the number of triangles involving i .
I The trace is 6 times the number of triangles.
I If � is eigenvalue of A, ie., Ax = �x , then �3 is eigenvalue

of A3.
I In practice, computing top few eigenvalues suffices.

1For ex, see. Fast Counting of Triangles in Large Real Networks without
counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.



SIROCCO Challenge

I Problem: Given graph G = (V ;E), count the number of
triangles.1

I Solution:
I For each edge (u ; v), generate a tuple (u ; v ; 0).
I For each vertex v and for each pair of neighbors x ; z of v ,

generate a tuple (x ; z ; 1).
I Presence of both 0 and 1 tuple for an edge is a triangle.

I Solution: The number of triangles is
P

i �
3
i

6 where �i are
eigenvalues of adjacency matrix A of G in sorted order.
I A3

ii is the number of triangles involving i .
I The trace is 6 times the number of triangles.
I If � is eigenvalue of A, ie., Ax = �x , then �3 is eigenvalue

of A3.
I In practice, computing top few eigenvalues suffices.

1For ex, see. Fast Counting of Triangles in Large Real Networks without
counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.



Eigenvalue Estimation

A is a n � n real valued matrix.

I Lanczos method.

I Sketches. Ar for pseudo random n � d vector r , d << n .
Will O(nd) sketch fit into one machine?



Eigenvalue Estimation

A is a n � n real valued matrix.

I Lanczos method.
I Sketches. Ar for pseudo random n � d vector r , d << n .

Will O(nd) sketch fit into one machine?



Special Case

Motivation: Logs processing.

x = inputrecord;
x-squared = x * x;
aggregator: table sum;
emit aggregator <- x-squared;

MUD Algorithm m = (�;�; �).
I Local function � : �! Q maps input item to a message.
I Aggregator � : Q �Q ! Q maps two messages to a single

message.
I Post-processing operator � : Q ! � produces the final

output, applying mT (x).
I Computes a function f if �(mT (�)) = f for all trees T .



MUD Examples

�(x ) = hx ; x i
�(ha1; b1i; ha2; b2i) = hmin(a1; a2);max(b1; b2)i

�(ha ; bi) = b � a

Figure: mud algorithm for computing the total span (left)



MUD Examples

�(x ) = hx ; h(x ); 1i
�(ha1; h(a1); c1i; ha2; h(a2); c2i)

=

(
hai ; h(ai ); ci i if h(ai ) < h(aj )

ha1; h(a1); c1 + c2i otherwise

�(ha ; b; ci) = a if c = 1

Figure: Mud algorithms for computing a uniform random sample of
the unique items in a set (right). Here h is an approximate minwise
hash function.



Streaming

I streaming algorithm s = (�; �).
I operator � : Q � �! Q
I � : Q ! � converts the final state to the output.
I On input x 2 �n , the streaming algorithm computes

f = �(s0(x)), where 0 is the starting state, and
sq(x) = �(�(: : : �(�(q ; x1); x2); : : : ; xk�1); xk ).

I Communication complexity is log jQ j



MUD vs Streaming

I For a mud algorithm m = (�;�; �), there is a streaming
algorithm s = (�; �) of the same complexity with same
output, by setting �(q ; x ) = �(q ;�(x )).

I Central question: Can MUD simulate streaming?
I Count the occurrences of the first odd number on the

stream.
I Symmetric problems? Symmetric index problem.

S = (a; 1; x1; p); (a; 2; x2; p); : : : ; (a; 2; xn ; p);

(b; 1; y1; q); (b; 2; y2; q); : : : ; (b; 2; yn ; q):

Additionally, we have xq = yp . Compute function
f (S) = xq .



MUD vs Streaming

I For a mud algorithm m = (�;�; �), there is a streaming
algorithm s = (�; �) of the same complexity with same
output, by setting �(q ; x ) = �(q ;�(x )).

I Central question: Can MUD simulate streaming?

I Count the occurrences of the first odd number on the
stream.

I Symmetric problems? Symmetric index problem.

S = (a; 1; x1; p); (a; 2; x2; p); : : : ; (a; 2; xn ; p);

(b; 1; y1; q); (b; 2; y2; q); : : : ; (b; 2; yn ; q):

Additionally, we have xq = yp . Compute function
f (S) = xq .



MUD vs Streaming

I For a mud algorithm m = (�;�; �), there is a streaming
algorithm s = (�; �) of the same complexity with same
output, by setting �(q ; x ) = �(q ;�(x )).

I Central question: Can MUD simulate streaming?
I Count the occurrences of the first odd number on the

stream.

I Symmetric problems? Symmetric index problem.

S = (a; 1; x1; p); (a; 2; x2; p); : : : ; (a; 2; xn ; p);

(b; 1; y1; q); (b; 2; y2; q); : : : ; (b; 2; yn ; q):

Additionally, we have xq = yp . Compute function
f (S) = xq .



MUD vs Streaming

I For a mud algorithm m = (�;�; �), there is a streaming
algorithm s = (�; �) of the same complexity with same
output, by setting �(q ; x ) = �(q ;�(x )).

I Central question: Can MUD simulate streaming?
I Count the occurrences of the first odd number on the

stream.
I Symmetric problems? Symmetric index problem.

S = (a; 1; x1; p); (a; 2; x2; p); : : : ; (a; 2; xn ; p);

(b; 1; y1; q); (b; 2; y2; q); : : : ; (b; 2; yn ; q):

Additionally, we have xq = yp . Compute function
f (S) = xq .



MUD vs Streaming

For any symmetric function f : �n ! � computed by a
g(n)-space, c(n)-communication streaming algorithm (�; �),
with g(n) = 
(logn) and c(n) = 
(logn),

there exists a O(c(n))-communication, O(g2(n))-space mud
algorithm (�;�; �) that also computes f .



MUD vs Streaming

For any symmetric function f : �n ! � computed by a
g(n)-space, c(n)-communication streaming algorithm (�; �),
with g(n) = 
(logn) and c(n) = 
(logn),

there exists a O(c(n))-communication, O(g2(n))-space mud
algorithm (�;�; �) that also computes f .



MUD vs Streaming: 2 parties

I xA and xB are partitions of the input sequence x sent to
Alice and Bob.

I Alice runs the streaming algorithm on her input sequence
to produce the state qA = s0(xA), and sends this to Carol.
Similarly, Bob sends qB = s0(xB ) to Carol.

I Carol receives the states qA and qB , which contain the sizes
nA and nB of the input sequences xA and xB , and needs to
calculate f = s0(xAjjxB ).



MUD vs Streaming: 2 parties

I xA and xB are partitions of the input sequence x sent to
Alice and Bob.

I Alice runs the streaming algorithm on her input sequence
to produce the state qA = s0(xA), and sends this to Carol.
Similarly, Bob sends qB = s0(xB ) to Carol.

I Carol receives the states qA and qB , which contain the sizes
nA and nB of the input sequences xA and xB , and needs to
calculate f = s0(xAjjxB ).



MUD vs Streaming: 2 parties

I xA and xB are partitions of the input sequence x sent to
Alice and Bob.

I Alice runs the streaming algorithm on her input sequence
to produce the state qA = s0(xA), and sends this to Carol.
Similarly, Bob sends qB = s0(xB ) to Carol.

I Carol receives the states qA and qB , which contain the sizes
nA and nB of the input sequences xA and xB , and needs to
calculate f = s0(xAjjxB ).



2 Parties Communication

I Carol finds sequences x0A and x0B of length nA and nB such
that qA = s0(x0A) and qB = s0(x0B ).

I Carol then outputs �(s0(x0A � x0B )).

�(s0(x0A � x0B )) = �(s0(xA � x0B ))
= �(s0(x0B � xA))

= �(s0(xB � xA))

= �(s0(xA � xB ))

= f (xA � xB )

= f (x):



2 Parties Communication

I Carol finds sequences x0A and x0B of length nA and nB such
that qA = s0(x0A) and qB = s0(x0B ).

I Carol then outputs �(s0(x0A � x0B )).

�(s0(x0A � x0B )) = �(s0(xA � x0B ))
= �(s0(x0B � xA))

= �(s0(xB � xA))

= �(s0(xA � xB ))

= f (xA � xB )

= f (x):



Space Efficient 2 Party Communication

I Non-deterministic simulation:

I First, guess the symbols of x0A one at a time, simulating the
streaming algorithm s0(x0A) on the guess. If after nA

guessed symbols we have s0(x0A) 6= qA, reject this branch.
Then, guess the symbols of x0B , simulating (in parallel)
s0(x0B ) and sqA(x0B ). If after nB steps we have s0(x0B ) 6= qB ,
reject this branch; otherwise, output qC = sqA(x0B ).

I This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid qC .

I By Savitch’s theorem, it follows that there is a
deterministic, g2(n)-space algorithm.

I Simulation time is superpolynomial.



Space Efficient 2 Party Communication

I Non-deterministic simulation:
I First, guess the symbols of x0A one at a time, simulating the

streaming algorithm s0(x0A) on the guess.

If after nA

guessed symbols we have s0(x0A) 6= qA, reject this branch.
Then, guess the symbols of x0B , simulating (in parallel)
s0(x0B ) and sqA(x0B ). If after nB steps we have s0(x0B ) 6= qB ,
reject this branch; otherwise, output qC = sqA(x0B ).

I This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid qC .

I By Savitch’s theorem, it follows that there is a
deterministic, g2(n)-space algorithm.

I Simulation time is superpolynomial.



Space Efficient 2 Party Communication

I Non-deterministic simulation:
I First, guess the symbols of x0A one at a time, simulating the

streaming algorithm s0(x0A) on the guess. If after nA

guessed symbols we have s0(x0A) 6= qA, reject this branch.

Then, guess the symbols of x0B , simulating (in parallel)
s0(x0B ) and sqA(x0B ). If after nB steps we have s0(x0B ) 6= qB ,
reject this branch; otherwise, output qC = sqA(x0B ).

I This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid qC .

I By Savitch’s theorem, it follows that there is a
deterministic, g2(n)-space algorithm.

I Simulation time is superpolynomial.



Space Efficient 2 Party Communication

I Non-deterministic simulation:
I First, guess the symbols of x0A one at a time, simulating the

streaming algorithm s0(x0A) on the guess. If after nA

guessed symbols we have s0(x0A) 6= qA, reject this branch.
Then, guess the symbols of x0B , simulating (in parallel)
s0(x0B ) and sqA(x0B ).

If after nB steps we have s0(x0B ) 6= qB ,
reject this branch; otherwise, output qC = sqA(x0B ).

I This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid qC .

I By Savitch’s theorem, it follows that there is a
deterministic, g2(n)-space algorithm.

I Simulation time is superpolynomial.



Space Efficient 2 Party Communication

I Non-deterministic simulation:
I First, guess the symbols of x0A one at a time, simulating the

streaming algorithm s0(x0A) on the guess. If after nA

guessed symbols we have s0(x0A) 6= qA, reject this branch.
Then, guess the symbols of x0B , simulating (in parallel)
s0(x0B ) and sqA(x0B ). If after nB steps we have s0(x0B ) 6= qB ,
reject this branch; otherwise, output qC = sqA(x0B ).

I This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid qC .

I By Savitch’s theorem, it follows that there is a
deterministic, g2(n)-space algorithm.

I Simulation time is superpolynomial.



Proof

I Finish the proof for arbitrary computation tree inductively.
I Extends to streaming algorithms for approximating f that

work by computing some other function g exactly over the
stream, for example, sketch-based algorithms that maintain
ci = hx;vi i where x is the input vector and some vi .
Public randomness.

I Doesn’t extend to randomized algorithms with private
randomness, partial functions, etc.



Multiple Keys

I Any N -processor, M -memory, T -time EREW-PRAM
algorithm which has a log(N +M )-bit word in every
memory location,
can be simulated by a O(T )-round, (N +M )-key mud
algorithm with communication complexity O(log(N +M ))

bits per key.
I In particular, any problem in class NC has a

polylog(n)-round, poly(n)-key mud algorithm with
communication complexity O(log(n)) bits per key.



Concluding Remarks

I Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos,
Clifford Stein, Zoya Svitkina: On distributing symmetric
streaming computations. SODA 2008: 710-719


