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» At a deliberately high level, we know the MapReduce
system.

» Parallel. Map and Reduce functions. Used when data is
large. Changing system.

» There is nice PRAM theory of parallel algorithms.
» NC, prefix sums, list ranking, and more.
» Goal: Develop a useful theory of MapReduce algorithms.

» An algorithmus role. Interesting problems, algorithms.
Bridge from the other side.
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Thoughts Circa 2006

» Prefix sum in O(1) rounds.
» Problem: A[l,...,n] = PA[l,---,n] where
PA[1] = Ejgi Ayl
» Solution:

> Assign Aliv/n+1,--, (i + 1)y/n] to key 1.
> Solve problem on B[l y/n] with one proc,
G+DVE 4
Zifﬂ Doable? _
> Solve problem for key ¢ with PB[t¢ — 1]. Doable?

» List ranking in O(1) rounds?
» Some graph algorithms in O(1) rounds recently.
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generate a tuple (z, z,1).
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2N

» Solution: The number of triangles is <¢{— where A; are
eigenvalues of adjacency matrix A of G in sorted order.

» A3 is the number of triangles involving 1.

» The trace is 6 times the number of triangles.

» If ) is eigenvalue of A, ie., Az = Az, then \® is eigenvalue
of A3.

» In practice, computing top few eigenvalues suffices.

!For ex, see. Fast Counting of Triangles in Large Real Networks without
counting: Algorithms and Laws, ICDM 08, by C. Tsourakakis.
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A is a n x n real valued matrix.

» Lanczos method.

» Sketches. Ar for pseudo random n x d vector r, d << n.
Will O(nd) sketch fit into one machine?



Special Case

Motivation: Logs processing.

x = inputrecord;

x-squared = x * x;
aggregator: table sum;

emit aggregator <- x-squared;

MUD Algorithm m = ($, @, 7).
» Local function ¢ : ¥ — @ maps input item to a message.
> Aggregator @ : Q X @ — @ maps two messages to a single
message.
» Post-processing operator 77 : @ — X produces the final
output, applying my(x).
» Computes a function f if n(my(-)) = f for all trees 7.



MUD Examples

®(z) = (z, z)
®((a1, b1), (a2, b2)) = (min(ay, az), max(by, b))
n({a,b))=b—-a

Figure: mud algorithm for computing the total span (left)




MUD Examples

®((a1, h(a1), c1), (az, h(a2), c2))
_{Q%mem if h(a;) < h(a)
— | (e, A(

a1), c1 + cz) otherwise

n({a,b,c)) =aif c=1

Figure: Mud algorithms for computing a uniform random sample of
the unique items in a set (right). Here h is an approximate minwise
hash function.



Streaming

» streaming algorithm s = (o, 7).
> operatoro: Q X X — @
> 7: Q — X converts the final state to the output.

» On input x € X", the streaming algorithm computes
f = n(s°(x)), where 0 is the starting state, and
si(x)=o(o(...0(0(q, z), 22), - - -, Tu—1), Tk)-

» Communication complexity is log|Q)|
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MUD vs Streaming

» For a mud algorithm m = ($, @, n), there is a streaming
algorithm s = (o,7) of the same complexity with same
output, by setting o(q, z) = ®(q, ®(z)).

» Central question: Can MUD simulate streaming?

» Count the occurrences of the first odd number on the
stream.
» Symmetric problems? Symmetric index problem.

S = (a,l,xl,p),(a,2,w2’p)’...,(a,2,xn,p),
(ba 1) Y1, q)? (b’2v Y2, q)) RN (b)2v Yn, Q)

Additionally, we have z; = y,. Compute function

f(S) =z,
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MUD vs Streaming

For any symmetric function f : ¥™ — ¥ computed by a
g(n)-space, c(n)-communication streaming algorithm (o, 7),
with g(n) = Q(logn) and c(n) = Q(log n),

there exists a O(c(n))-communication, O(g?(n))-space mud
algorithm (&, @, n) that also computes f.
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» x4 and xp are partitions of the input sequence x sent to
Alice and Bob.

» Alice runs the streaming algorithm on her input sequence
to produce the state g4 = s°(x4), and sends this to Carol.
Similarly, Bob sends g5 = s°(xp) to Carol.

» Carol receives the states ¢4 and gz, which contain the sizes
na and ng of the input sequences x4 and xp, and needs to
calculate f = s%(x4||x5).
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2 Parties Communication

» Carol finds sequences x'; and x5 of length n4 and np such
that g4 = s%(x/;) and gp = s%(xz).

» Carol then outputs 7(s%(x/, - x5)).

M0 xB) = (2 x))
= n(s°(xp - x4))
= n(s°(x5 - xa))
= n(s%(x4-x5))
= f(xa-xB)
= f(x).
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Space Efficient 2 Party Communication

» Non-deterministic simulation:

» First, guess the symbols of x/, one at a time, simulating the
streaming algorithm s°(x/,) on the guess. If after ny
guessed symbols we have s%(x/;) # ga, reject this branch.
Then, guess the symbols of x5, simulating (in parallel)
s0(x’3) and s%(x'z). If after ng steps we have s°(x’) # gz,
reject this branch; otherwise, output gc = s%(xg).

» This procedure is a non-deterministic, O(g(n))-space
algorithm for computing a valid g¢.

» By Savitch’s theorem, it follows that there is a
deterministic, g?(n)-space algorithm.

» Simulation time is superpolynomial.



Proof

Finish the proof for arbitrary computation tree inductively.

Extends to streaming algorithms for approximating f that
work by computing some other function g exactly over the
stream, for example, sketch-based algorithms that maintain
¢; = (x,v;) where x is the input vector and some v;.
Public randomness.

Doesn’t extend to randomized algorithms with private
randomness, partial functions, etc.



Multiple Keys

» Any N-processor, M-memory, T-time EREW-PRAM
algorithm which has a log(N + M)-bit word in every
memory location,
can be simulated by a O(T)-round, (N + M)-key mud
algorithm with communication complexity O(log(N + M))
bits per key.

» In particular, any problem in class NC has a
polylog(n)-round, poly(n)-key mud algorithm with
communication complexity O(log(n)) bits per key.



Concluding Remarks

» Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos,
Clifford Stein, Zoya Svitkina: On distributing symmetric
streaming computations. SODA 2008: 710-719



