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What is Machine Learning?

The simple version:

Given data (x , y)∗ find a function f (x) which predicts y .

y ∈ {0, 1} is a “label”
x ∈ Rn is “features”
f (x) = 〈w · x〉 is a linear predictor.

y might be more complex and structured. Or nonexistent...
x might be a sparse vector or a string.
f can come from many more complex functional spaces.
In general: the discipline of data-driven prediction.
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Where is Machine Learning?

At :

1 Is the email spam or not?

2 Which news article is most interesting to a user?

3 Which ad is most interesting to a user?

4 Which result should come back from a search?

In the rest of the world.

1 “statistical arbitrage”

2 Machine Translation

3 Watson

4 Face detectors in cameras

5 ... constantly growing.
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How does it work?

A common approach = gradient descent.
Suppose we want to choose w for f (x) = 〈w · x〉.
Start with w = 0.
Compute a “loss” according to lf (x , y) = (f (x)− y)2

Alter the weights according to w ← w − η ∂lf
∂w .

There are many variations and many other approaches.
All efficient methods have some form of greedy optimization core.
But it’s not just optimization:

1 We must predict the y correctly for new x .

2 There are popular nonoptimization methods as well.
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Demonstration

Learning to classify news articles (RCV1 dataset)

An Outline of What’s Next

Ron Bekkerman, Misha Bilenko and I are editing a book on
“Scaling up Machine Learning”. Overview Next.
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What’s in the book?

Parallel Unsupervised Learning Methods

1 Information-Theoretic Co-Clustering with MPI

2 Spectral Clustering using MapReduce as a subroutine

3 K-Means with GPU

4 Latent Dirichlet Analysis with MPI

It’s very hard to compare different results.



... But let’s try
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Ground Rules

Ginormous caveat: Prediction performance varies wildly depending
on the problem–method pair.

The standard: Input complexity/time.

⇒ No credit for creating complexity then reducing it. (Ouch!)

Most interesting results reported. Some cases require creative
best-effort summary.
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Supervised Training
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Supervised Testing (but not training)
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My Flow Chart for Learning Optimization

1 Choose an efficient effective algorithm

2 Use compact binary representations.

3 If (Computationally Constrained)

4 then GPU
5 else

1 If few learning steps
2 then Map-Reduce
3 else Research Problem.


