DIMACS Workshop on Parallelism: A 2020 Vision Lattice Basis Reduction and Multi-Core

Werner Backes and Susanne Wetzel

Stevens Institute of Technology

29th March 2011

Work supported through NSF Grant DUE 1027452.

Definition

Let $n, k \in \mathbb{N}$ with $k \leq n$. A **lattice** $L \subset \mathbb{R}^n$ is a discrete, additive subgroup of \mathbb{R}^n , such that

$$L = \{ \sum_{i=1}^{k} x_i \underline{b}_i \mid x_i \in \mathbb{Z}, i = 1, \dots, k \},$$

where $\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k \in \mathbb{R}^n$ are linearly independent vectors.

 $B = (\underline{b}_1, \dots, \underline{b}_k) \in \mathbb{R}^{n \times k}$ is a **basis** of the *k*-dimensional lattice *L*.

Lattice basis reduction: Find a basis $B' = (\underline{b}'_1, \ldots, \underline{b}'_k)$ for lattice L(B) with BU = B' (U unimodular) and as short and orthogonal basis vectors as possible.

Introduction – Example

$$L_{1} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + d \begin{pmatrix} 1 \\ 2 \end{pmatrix}; c, d \in \mathbb{Z} \right\}$$
$$L_{2} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 1 \end{pmatrix}; c, d \in \mathbb{Z} \right\}$$

Features of Schnorr-Euchner Algorithm

- Overcomes stability/performance issues of the original LLL.
- Uses two representations of the lattice basis.
 - Exact representation (long integer arithmetic) used to perform vector operations.
 - Approximate representation (multi-precision floating point, double) used for orthogonalization and computation of Gram-Schmidt coefficients μ_{ij} .
- Correction steps (heuristics) improve stability of the algorithm.
 - Computation of exact scalar product if necessary.
 - Step back, if size-reduction factors are too big.

Lattice Basis Reduction – Schnorr-Euchner LLL algorithm

Algorithm (Schnorr-Euchner LLL algorithm – simplified)

INPUT: Lattice basis $B = (\underline{b}_1, \ldots, \underline{b}_k) \in \mathbb{Z}^{n \times k}$ OUTPUT: LLL-reduced lattice basis B $APPROX_BASIS(B', B)$ (1)(2) while (i < k) do (3) SCALAR-PRODUCTS(R, μ , B', B) (correction step might require computation of exact scalar product) ORTHOGONALIZATION(R, μ) (4) (5) μ -UPDATE(μ) SIZE-REDUCTION(B, μ) (6)(might trigger step back correction step) (7)if $(F_c = false \land F_r = true)$ then // recompute orthogonalization (8) ORTHOGONALIZATION(\mathbf{R}, μ) (9) $F_r = false$ if $(F_c = true)$ then // do we have to do a step back? (10)(11) $i = \max(i - 1, 2)$ $F_c = false$ (12)(13)else i' = i(14)// check for LLL condition (15)while $((i > 1) \land (yR_{i-1,i-1} > S_{i-1}))$ do (16) $SWAP(\underline{b}_i, \underline{b}_{i-1})$ (17) $SWAP(\underline{b}'_i, \underline{b}'_{i-1})$ i = i - 1(18)if $(i \neq i')$ then (19)(20)if (i = 1) then (21) $R_{11} = ||b_1'||$ (22)i = 2else (24)i = i + 1

Parallel Lattice Basis Reduction – Challenges

Challenges: Dependencies

- Partial, on demand computation of orthogonal basis.
- Might compute exact scalar product as correction step.
- Size-reduction relies on computation of orthogonal basis.
- Single size-reduction updates of orthogonal basis.
- Orthogonal basis is dependent on the order of the basis vector.

Solutions to date:

- **1** Identify parallel and non-parallel parts within the algorithm.
 - Find alternative ways to perform computations in parallel.
- Ø Minimize non-parallel portion of the code.
 - Non-parallel portion of the code limits speed-up factor.
- **③** Balance workload for each parallel part among all threads.
 - Minimize the waiting time at barriers.
 - Minimize the number of barriers and locks.
 - Main thread does prepare for parallel computations.
 - A slight imbalance sometimes helps to keep the balance.

Parallel Lattice Basis Reduction – Scalar Products

Scalar product:

- Computation of scalar product including correction step can be taken out of the orthogonalization and precomputed.
- Divide computation into slices to minimize overhead and compensate for unpredictable correction steps.
- Size of a slice depends on the value of *i*.

Algorithm (Scalarproducts with correction step)

$$\begin{array}{ll} (1) \quad s_{sp} = \left(\left\lceil \frac{i}{n} \right\rceil > sp_{max} \right) ? sp_{max} : \left\lceil \frac{i}{n} \right\rceil \\ (2) \quad g = s_{sp} \cdot (t-1), \ e = s_{sp} \cdot t \\ (3) \quad \text{while} \left\{ s \leq i \right\} \text{ do} \\ (4) \quad e = (e > i) ? i : e \\ (5) \quad \text{for} \left(s \leq j < e \right) \text{ do} \\ (6) \quad \text{if} \left(\left| \langle \underline{b}'_i, \underline{b}'_j \rangle \right| < 2^{-\frac{p}{2}} \| \underline{b}'_i \| \| \underline{b}'_j \| \right) \text{ then} \\ (7) \quad R_{ij} = \text{APPROX.VALUE}(\langle \underline{b}_i, \underline{b}_j \rangle) \\ (8) \quad \text{else} \\ (9) \quad \mathbf{R}_{ij} = \langle \underline{b}'_i, \underline{b}'_j \rangle \\ (10) \quad \mathbf{MUTEX.LOCK}(l_1) \\ (11) \quad s = sl \\ (12) \quad \text{MUTEX.UNLOCK}(l_1) \\ (14) \quad \mathbf{MUTEX.UNLOCK}(l_1) \end{array}$$

Parallel Lattice Basis Reduction – Orthogonalization (I)

Orthogonalization:

- Remainder of orthogonalization too hard to parallelize in current form.
- Need to transform computation in order to allow for a parallel computation.

Algorithm (orthogonalization)

Standard implementation:

(1) for
$$(1 \le j < i)$$
 do
(2) for $(1 \le m < j)$ do
(3) $R_{ij} = R_{ij} - R_{im}\mu_{jr}$
(4) $\mu_{ij} = \frac{R_{ij}}{R_{jj}}$
(5) $R_{ii} = R_{ii} - R_{ij}\mu_{ij}$

$$(6) \qquad S_{j+1} = R_{ii}$$

Parallel enabling version:

$$\begin{array}{ll} (1) & \text{for } (1 \leq j < i) \ \text{do} \\ (2) & \text{for } (j \leq l < i) \ \text{do} \\ (3) & r_l = r_l + R_{i,j-1} \mu_{l,j-1} \\ (4) & R_{ij} = R_{ij} - r_j \\ (5) & \mu_{ij} = \frac{R_{ij}}{R_{ij}} \\ (6) & R_{ii} = R_{ii} - R_{ij} \mu_{ij} \\ (7) & S_{j+1} = R_{ii} \end{array}$$

• The values for r_l can now be computed in parallel.

Parallel Lattice Basis Reduction – Orthogonalization (II)

- Main thread (thread₁) performs precomputation.
- Compute threads wait for the start of the parallel computation.

Algorithm (Orthogonolization - main and compute threads)

Orthogonalization – Thread₁

```
t_a = COMPUTE_ACTIVE_THREAD(i)
 (2)
      i = 0
 (3)
       while (j < i) do
 (4)
       \mathbf{s} = \mathbf{j}, \mathbf{m} = \mathbf{0}
 (5)
          while (m < s_0 \land i < i) do
 (6)
            for (s < 1 < j) do
               r_j = r_j - R_{il}\mu_{il}
 (7)
 (8)
             R_{ii} = R_{ii} - r_i
(9)
             \mu_{ij} = \frac{R_{ij}}{R_{ii}}
             R_{ii} = R_{ii} - R_{ii} \mu_{ii}
(10)
(11)
             S_{i+1} = R_{ii}
(12)
             r_{i} = 0
             m = m + 1, j = j + 1
(13)
          COMPUTE_SPLIT_VALUES1(split, ta)
(14)
(15)
          BARRIER_WAIT(b_1)
```

 $\begin{array}{ll} (16) & \mbox{ for } (j \leq 1 < split_1) \mbox{ do } (17) & \mbox{ for } (s \leq m < j) \mbox{ do } (18) & r_l = r_l - R_{im} \mu_{lm} \end{array}$

Orthogonalization – **Thread**_t

```
t<sub>a</sub> = COMPUTE_ACTIVE_THREAD(i)
 (1)
 (2)
        if (t_a < t) then
 (3)
(4)
          e = 0
          while (e < i) do
 (5)
              \mathbf{s} = \mathbf{e}, \ \mathbf{e} = \mathbf{e} + \mathbf{s}_0
 (6)
             if (e > i) then
 (7)
                \mathbf{e} = i
 (8)
              BARRIER_WAIT(b_1)
              for (split_t \leq 1 < split_{t+1}) do
 (9)
                for (s \le m < e) do
(10)
                    r_l = r_l - R_{im}\mu_{lm}
(11)
```

Size-reduction:

- Vector operations on the exact basis can be parallelized easily.
- Separation into main and compute threads is not necessary.
- Divide vectors into equal sized part.

μ -Update:

- Similar parallelization method as the one used for the orthogonalization.
- Main thread performs per-computations in order to allow for parallel computations afterwards.
- Dynamically decide on number of active threads depending on value of *i*.

Parallel Lattice Basis Reduction – Sequences of y

Reduction Parameter *y*:

- Using sequences instead of single parameter *y*.
- Higher values for *i* translate into more work that can be parallelized within main while-loop body.
- Minimal effect on single core performance for knapsack and SVP challenge type lattice bases, but beneficial for multi-core.
- More effective for SVP challenge than for knapsack type lattice bases.

Lattice bases:

- NTRU type lattice bases (cyclic sub-structure), with dimensions 50 to 2000, cyclic sub-structure of size 25 to 1000.
- Knapsack type lattice bases, with entries up to 1000 bit and dimensions from 50 to 2000.
- SVP challenge type lattice bases, dimensions from 50 to 2000.
- Generated and reduced 20 lattice bases for each combination of type, dimension an bit length.

Test systems:

- Sun X4150 Server, 2 x Quad-Core Intel Xeon 2.83 Ghz, 8 GB Ram, Debian Linux.
- These processors do not have a fast interconnect or an integrated memory controller.
- Tested the 4 and 8-thread version of the algorithm.
- Measured real time, user time, and system time.

Speed-up:

- Quotients of user time for the non-parallel and the real time for the multi-threaded version.
- Non-parallel and parallel algorithms testes using sequence of y = 0.875, 0.99.

Parallel Lattice Basis Reduction – Results (III)

Speed-up:

- Knapsack type lattice basis with smaller entries up to 500 bits.
- Doubles instead of multi-precision floating point values used for approximation.
- Two quad-core Intel Xeon CPUs of the newest generation.

Parallel Lattice Basis Reduction – BoostReduce Framework

BoostReduce Framework:

• Alternative method for computing a "good" basis necessary for finding "short" lattice vectors.

Goal:

• Solve the underlying problems with a focus on methods/algorithms that can be parallelized easily.

Approach:

- Uses a new parallel method for finding short lattice vectors.
- Short vectors are integrated into an "improved" lattice basis.
- No overall optimal strategy for the integration of vectors ⇒ several "improved" lattice bases are generated.
- Improved lattice bases are then reduced in parallel.
- Best basis out of these reductions is used as starting point for the next rounds in the BoostReduce framework.

 \Rightarrow Find alternative methods to improve the parallel LLL reduction beyond the currently number of 8 or 12 threads.

Parallel Lattice Basis Reduction – Beyond 8 Threads

Beyond 8 threads:

- Find ways around the dependencies issues of the LLL.
- Goal is to create independent subproblems that can be solved in parallel without the need for a tight synchronization.
- The independent sub problems should be of equal size in order for them to require a similar reduction times.
- Combine results into LLL reduced basis of the initial lattice.
- \Rightarrow Sum of running times has to give us an advantage.

Conclusion:

- Significantly improved our parallel LLL based on the Schnorr-Euchner algorithm.
- Sequences of reduction parameters beneficial in parallel case.
- Dynamically adjust parameters used to divide the work load depending on value of *i* (main loop).
- BoostReduce is a first alternative approach to lattice basis reduction.
- Encouraging initial results for parallel LLL reduction of certain lattice basis types beyond 8 threads.

Future work:

- Further improve the parallel LLL for lattice bases with lower dimension and smaller entries (use a different approximation).
- New scheduling for orthogonalization and μ -update.
- Improve on the alternative reduction algorithms.
- Parallelize stronger reduction algorithms, such as BKZ.

References:

- Factoring Polynomials with Rational Coefficients, A.K. Lensta, H.W. Lenstra, and L. Lovász, Math. Ann. Volume 261, 1982.
- 2 Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems, C.P. Schnorr and M. Euchner, Proceedings of FCT 91, 1991.
- Sloating-Point LLL Revisited, P. Nguyen and D. Stéhle, Proceedings of Eurocrypt 2005.
- BoostReduce A Framework For Strong Lattice Basis Reduction, Werner Backes and Susanne Wetzel, ePrint 2010/386
- Parallel Lattice Basis Reduction using a Multi-Threaded Schnorr-Euchner LLL Algorithm, Werner Backes and Susanne Wetzel, Proceedings of Euro-Par 2009, Delft.
- Heuristics on Lattice Basis Reduction in Practice, Werner Backes and Susanne Wetzel, ACM Journal on Experimental Algorithms, Vol. 7, 2002.