
logo

DIMACS Workshop on Parallelism: A 2020 Vision
Lattice Basis Reduction and Multi-Core

Werner Backes and Susanne Wetzel

Stevens Institute of Technology

29th March 2011

Work supported through NSF Grant DUE 1027452.

logo

Introduction

Definition

Let n, k ∈ N with k ≤ n. A lattice L ⊂ Rn is a discrete, additive
subgroup of Rn, such that

L = {
k∑

i=1

xibi | xi ∈ Z, i = 1, . . . , k},

where b1, b2, . . . , bk ∈ Rn are linearly independent vectors.
B = (b1, . . . , bk) ∈ Rn×k is a basis of the k-dimensional lattice L.

Lattice basis reduction: Find a basis B ′ = (b′1, . . . , b
′
k) for lattice

L(B) with BU = B ′ (U unimodular) and as short and orthogonal
basis vectors as possible.

logo

Introduction – Example

x

y

x

y

L1 =

{(
x
y

)
|
(

x
y

)
= c

(
1
1

)
+ d

(
1
2

)
; c , d ∈ Z

}
L2 =

{(
x
y

)
|
(

x
y

)
= c

(
1
0

)
+ d

(
0
1

)
; c , d ∈ Z

}

logo

Lattice Basis Reduction – Schnorr-Euchner LLL algorithm

Features of Schnorr-Euchner Algorithm

Overcomes stability/performance issues of the original LLL.

Uses two representations of the lattice basis.

Exact representation (long integer arithmetic) used to perform
vector operations.
Approximate representation (multi-precision floating point,
double) used for orthogonalization and computation of
Gram-Schmidt coefficients µij .

Correction steps (heuristics) improve stability of the
algorithm.

Computation of exact scalar product if necessary.
Step back, if size-reduction factors are too big.

logo

Lattice Basis Reduction – Schnorr-Euchner LLL algorithm

Algorithm (Schnorr-Euchner LLL algorithm – simplified)

Input: Lattice basis B = (b1, . . . , bk) ∈ Zn×k

Output: LLL-reduced lattice basis B

(1) APPROX BASIS(B′,B)
(2) while (i ≤ k) do
(3) SCALAR-PRODUCTS(R, µ,B′,B)

(correction step might require computation of exact scalar product)
(4) ORTHOGONALIZATION(R, µ)
(5) µ-UPDATE(µ)
(6) SIZE-REDUCTION(B, µ)

(might trigger step back correction step)
(7) if (Fc = false ∧ Fr = true) then // recompute orthogonalization
(8) ORTHOGONALIZATION(R, µ)
(9) Fr = false

(10) if (Fc = true) then // do we have to do a step back?
(11) i = max(i − 1, 2)
(12) Fc = false
(13) else
(14) i′ = i // check for LLL condition
(15) while ((i > 1) ∧ (yRi−1,i−1 > Si−1)) do
(16) SWAP(bi , bi−1)

(17) SWAP(b′i , b′i−1)

(18) i = i − 1
(19) if (i 6= i′) then
(20) if (i = 1) then
(21) R11 = ‖b′1‖
(22) i = 2
(23) else
(24) i = i + 1

logo

Parallel Lattice Basis Reduction – Challenges

Challenges: Dependencies

Partial, on demand computation of orthogonal basis.

Might compute exact scalar product as correction step.

Size-reduction relies on computation of orthogonal basis.

Single size-reduction updates of orthogonal basis.

Orthogonal basis is dependent on the order of the basis vector.

Solutions to date:

1 Identify parallel and non-parallel parts within the algorithm.
Find alternative ways to perform computations in parallel.

2 Minimize non-parallel portion of the code.
Non-parallel portion of the code limits speed-up factor.

3 Balance workload for each parallel part among all threads.
Minimize the waiting time at barriers.
Minimize the number of barriers and locks.
Main thread does prepare for parallel computations.
A slight imbalance sometimes helps to keep the balance.

logo

Parallel Lattice Basis Reduction – Scalar Products

Scalar product:

Computation of scalar product including correction step can
be taken out of the orthogonalization and precomputed.
Divide computation into slices to minimize overhead and
compensate for unpredictable correction steps.
Size of a slice depends on the value of i .

Algorithm (Scalarproducts with correction step)

(1) ssp =
(
d i

n
e > spmax

)
? spmax : d i

n
e

(2) s = ssp · (t − 1), e = ssp · t
(3) while (s ≤ i) do
(4) e = (e > i) ? i : e

(5) for (s ≤ j < e) do

(6) if (|〈b′i , b′j 〉| < 2
− p

2 ‖b′i ‖‖b′j ‖) then

(7) Rij = APPROX VALUE(〈bi , bj 〉)
(8) else
(9) Rij = 〈b′i , b′j 〉

(10) MUTEX LOCK(l1)
(11) s = sl
(12) sl = sl + ssp
(13) e = sl
(14) MUTEX UNLOCK(l1)

logo

Parallel Lattice Basis Reduction – Orthogonalization (I)

Orthogonalization:

Remainder of orthogonalization too hard to parallelize in
current form.

Need to transform computation in order to allow for a parallel
computation.

Algorithm (orthogonalization)

Standard implementation:
(1) for (1 ≤ j < i) do
(2) for (1 ≤ m < j) do
(3) Rij = Rij − Rimµjm

(4) µij =
Rij
Rjj

(5) Rii = Rii − Rijµij
(6) Sj+1 = Rii

Parallel enabling version:
(1) for (1 ≤ j < i) do
(2) for (j ≤ l < i) do
(3) rl = rl + Ri,j−1µl,j−1
(4) Rij = Rij − rj

(5) µij =
Rij
Rjj

(6) Rii = Rii − Rijµij
(7) Sj+1 = Rii

The values for rl can now be computed in parallel.

logo

Parallel Lattice Basis Reduction – Orthogonalization (II)

Main thread (thread1) performs precomputation.

Compute threads wait for the start of the parallel
computation.

Algorithm (Orthogonolization – main and compute threads)

Orthogonalization – Thread1

(1) ta = COMPUTE ACTIVE THREAD(i)
(2) j = 0
(3) while (j < i) do
(4) s = j, m = 0
(5) while (m < so∧ j < i) do
(6) for (s ≤ l < j) do
(7) rj = rj − Rilµjl
(8) Rij = Rij − rj

(9) µij =
Rij
Rjj

(10) Rii = Rii − Rijµij
(11) Sj+1 = Rii
(12) rj = 0
(13) m = m + 1, j = j + 1
(14) COMPUTE SPLIT VALUES1(split, ta)
(15) BARRIER WAIT(b1)

(16) for (j ≤ l < split1) do
(17) for (s ≤ m < j) do
(18) rl = rl − Rimµlm

Orthogonalization – Threadt
(1) ta = COMPUTE ACTIVE THREAD(i)
(2) if (ta ≤ t) then
(3) e = 0
(4) while (e < i) do
(5) s = e, e = e + so
(6) if (e > i) then
(7) e = i
(8) BARRIER WAIT(b1)
(9) for (splitt ≤ l < splitt+1) do

(10) for (s ≤ m < e) do
(11) rl = rl − Rimµlm

logo

Parallel Lattice Basis Reduction – Size-Reduction

Size-reduction:

Vector operations on the exact basis can be parallelized easily.

Separation into main and compute threads is not necessary.

Divide vectors into equal sized part.

µ-Update:

Similar parallelization method as the one used for the
orthogonalization.

Main thread performs per-computations in order to allow for
parallel computations afterwards.

Dynamically decide on number of active threads depending on
value of i .

logo

Parallel Lattice Basis Reduction – Sequences of y

Reduction Parameter y :

Using sequences instead of single parameter y .

Higher values for i translate into more work that can be
parallelized within main while-loop body.

Minimal effect on single core performance for knapsack and
SVP challenge type lattice bases, but beneficial for multi-core.

More effective for SVP challenge than for knapsack type
lattice bases.

0 2 4 6 8 10 12

x 10
4

0

200

400

600

800

1000

iterations of main loop

v
a

lu
e

 o
f

i

y = 0.99

y = 0.875,0.99

knapsack type lattice basis

0 1 2 3 4

x 10
5

0

200

400

600

800

1000

iterations of main loop

v
a

lu
e

 o
f

i

y = 0.99

y = 0.875,0.99

SVP challenge type lattice basis

logo

Parallel Lattice Basis Reduction – Results (I)

Lattice bases:

NTRU type lattice bases (cyclic sub-structure), with
dimensions 50 to 2000, cyclic sub-structure of size 25 to 1000.

Knapsack type lattice bases, with entries up to 1000 bit and
dimensions from 50 to 2000.

SVP challenge type lattice bases, dimensions from 50 to 2000.

Generated and reduced 20 lattice bases for each combination
of type, dimension an bit length.

Test systems:

Sun X4150 Server, 2 x Quad-Core Intel Xeon 2.83 Ghz, 8 GB
Ram, Debian Linux.

These processors do not have a fast interconnect or an
integrated memory controller.

Tested the 4 and 8-thread version of the algorithm.

Measured real time, user time, and system time.

logo

Parallel Lattice Basis Reduction – Results (II)

Speed-up:

Quotients of user time for the non-parallel and the real time
for the multi-threaded version.

Non-parallel and parallel algorithms testes using sequence of
y = 0.875, 0.99.

0 500 1000 1500 2000
0

1

2

3

4

5

dimension

s
p
e
e
d
−

u
p

old − 4−threads

dyn − 4 threads

old − 8 threads

dyn − 8 threads

knapsack type lattice basis

0 500 1000 1500 2000
0

1

2

3

4

5

dimension

s
p
e
e
d
−

u
p

old − 4−threads

dyn − 4 threads

old − 8 threads

dyn − 8 threads

SVP challenge type lattice basis

logo

Parallel Lattice Basis Reduction – Results (III)

Speed-up:

Knapsack type lattice basis with smaller entries up to 500 bits.

Doubles instead of multi-precision floating point values used
for approximation.

Two quad-core Intel Xeon CPUs of the newest generation.

0 500 1000 1500 2000
0

1

2

3

4

5

6

dimension

sp
e
e
d
−

u
p

dyn − 4 threads

dyn − 8 threads

logo

Parallel Lattice Basis Reduction – BoostReduce Framework

BoostReduce Framework:

Alternative method for computing a ”good” basis necessary
for finding ”short” lattice vectors.

Goal:

Solve the underlying problems with a focus on
methods/algorithms that can be parallelized easily.

Approach:

Uses a new parallel method for finding short lattice vectors.

Short vectors are integrated into an ”improved” lattice basis.

No overall optimal strategy for the integration of vectors
⇒ several ”improved” lattice bases are generated.

Improved lattice bases are then reduced in parallel.

Best basis out of these reductions is used as starting point for
the next rounds in the BoostReduce framework.

⇒ Find alternative methods to improve the parallel LLL reduction
beyond the currently number of 8 or 12 threads.

logo

Parallel Lattice Basis Reduction – Beyond 8 Threads

Beyond 8 threads:

Find ways around the dependencies issues of the LLL.
Goal is to create independent subproblems that can be solved
in parallel without the need for a tight synchronization.
The independent sub problems should be of equal size in order
for them to require a similar reduction times.
Combine results into LLL reduced basis of the initial lattice.

⇒ Sum of running times has to give us an advantage.

1000 1500 2000
1

1.5

2

2.5

3

3.5

4

dimension

fa
ct

o
r

2 subproblems

4 subproblems

8 subproblems

SVP challenge type lattice bases

logo

Parallel Lattice Basis Reduction – Conclusion/Future Work

Conclusion:

Significantly improved our parallel LLL based on the
Schnorr-Euchner algorithm.

Sequences of reduction parameters beneficial in parallel case.

Dynamically adjust parameters used to divide the work load
depending on value of i (main loop).

BoostReduce is a first alternative approach to lattice basis
reduction.

Encouraging initial results for parallel LLL reduction of certain
lattice basis types beyond 8 threads.

Future work:

Further improve the parallel LLL for lattice bases with lower
dimension and smaller entries (use a different approximation).

New scheduling for orthogonalization and µ-update.

Improve on the alternative reduction algorithms.

Parallelize stronger reduction algorithms, such as BKZ.

logo

Parallel Lattice Basis Reduction – References

References:

1 Factoring Polynomials with Rational Coefficients, A.K. Lensta, H.W. Lenstra,
and L. Lovász, Math. Ann. Volume 261, 1982.

2 Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset
Sum Problems, C.P. Schnorr and M. Euchner, Proceedings of FCT 91, 1991.

3 Floating-Point LLL Revisited, P. Nguyen and D. Stéhle, Proceedings of
Eurocrypt 2005.

4 BoostReduce - A Framework For Strong Lattice Basis Reduction, Werner
Backes and Susanne Wetzel, ePrint 2010/386

5 Parallel Lattice Basis Reduction using a Multi-Threaded Schnorr-Euchner LLL
Algorithm, Werner Backes and Susanne Wetzel, Proceedings of Euro-Par 2009,
Delft.

6 Heuristics on Lattice Basis Reduction in Practice, Werner Backes and Susanne
Wetzel, ACM Journal on Experimental Algorithms, Vol. 7, 2002.

