Our result

Features

A peak under the hood 00 00000 0000 Summary

<□> <@> < ≧> < ≧> < ≧> ≧ のQで 1/21

Scalable Transparent ARguments-of-Knowledge

Michael Riabzev

Department of Computer Science, Technion

DIMACS Workshop on Outsourcing Computation Securely

Joint work with Eli Ben-Sasson, Iddo Bentov, and Yinon Horesh

A peak under the hood 00 00000 0000 Summary

Talk outline

- Our result
- Novel theory review (Low degree testing)
- Concrete implementation performance review

\sim			
	1112	rocu	I±
0	u	i esu	I L

A peak under the hood 00 00000 0000

Our result

Features

A peak under the hood

Improvements Novel low-degree test Measurements

Summary

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q C 3/21

Our result

Features

A peak under the hood 00 00000 0000 Summary

Our result

Today I will tell you about STARK:

- "Scalable Transparent ARgument of Knowledge"
- New construction (theory+implementation¹) featuring:
 - Perfect witness-indistinguishability
 - Publicly verifiable
 - No trusted-setup
 - Universal
 - Succinct verification
- And additionally:
 - Post-quantum secure
 - Scalable prover (quasi-linear)

¹Proof-of-concept in C++

		1			+
0					u.

A peak under the hood 00 00000 0000 Summary

Our result

Features

A peak under the hood

Improvements Novel low-degree test Measurements

Summary

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q ↔ 5/21

Computational model

Interactive Oracle Proofs (IOP)[BCS16, RRR16]²:

- A generalization of IP[GMR89] and PCP[BFL91, AS98]
- Verifier interacts with the Prover
- Prover's messages too big for the verifier to read entirely
 - Also known as oracles

Computational model

Interactive Oracle Proofs (IOP)[BCS16, RRR16]²:

- A generalization of IP[GMR89] and PCP[BFL91, AS98]
- Verifier interacts with the Prover
- Prover's messages too big for the verifier to read entirely
 - Also known as oracles

Realistic argument-system:

- Using Merkle trees [Kil92, Kil95, Mic00, BCS16]
- Noninteractive system : Fiat-Shamir heuristic

²also known as PCIP in [RRR16]

Our result

Cryptographic assumption

- Inner protocol (IOP):
 - Provably sound³
 - Provably perfect zero-knowledge
- Compilation to (noninteractive) argument system:
 - Using the random oracle model
- Implementation:
 - Simulating a random-oracle using a hash-function

³Implementation uses security conjectures to improve concrete efficiency.

		1			÷
0					L.

A peak under the hood

Summary

Our result

Features

A peak under the hood

Improvements Novel low-degree test Measurements

Summary

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 8/21

				÷
0				L.

A peak under the hood ••• •••• ••••• Summary

Our result

Features

A peak under the hood Improvements

Novel low-degree test Measurements

Summary

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 9/21

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/21

STARK (this work) introduces improvements over SCI [BBCGGHPRSTV17] in several aspects: (Ben-Sasson, Bentov, Chiesa, Gabizon, Genkin, Hamilis, Pergament, R, Silberstein, Tromer, Virza)

Privacy — witness indistinguishability based on [BCGV16]

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 10/21

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 10/21

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI
- Low degree test optimized for interactive systems

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI
- Low degree test optimized for interactive systems
- Hash-tree commitment optimization based on queries patter
 - Reducing communication complexity

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 10/21

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI
- Low degree test optimized for interactive systems
- Hash-tree commitment optimization based on queries patter
 - Reducing communication complexity
- System code optimizations

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 10/21

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI
- Low degree test optimized for interactive systems
- Hash-tree commitment optimization based on queries patter
 - Reducing communication complexity
- System code optimizations

- Privacy witness indistinguishability based on [BCGV16]
- Arithmetization optimized for interactive systems
 - Disclaimer: RAM usage introduces ~ 8*T* log *T* additive overhead to witness size
 - in addition to O(T) witness size when no RAM is used
 - Derived from SCI
- Low degree test optimized for interactive systems
- Hash-tree commitment optimization based on queries patter
 - Reducing communication complexity
- System code optimizations
- In this talk we focus on the novel low-degree test

		1			÷
0					L.

Summary

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 星 の Q ↔ 11/21</p>

Our result

Features

A peak under the hood

Improvements Novel low-degree test Measurements

Summary

IOPP novel low-degree test

Theorem ([BBHR17])

Given oracle access to an evaluation $f : S \to \mathbb{F}_{2^n}$ over \mathbb{F}_2 linear **subspace** $S \subset \mathbb{F}_{2^n}$, there is an IOPP protocol to verify f is close to degree $d < \frac{|S|}{3}$, with the following properties:

- Total proof size $< \frac{|S|}{2}$.
- Round complexity $\frac{\log |S|}{2}$.
- Prover complexity < 4|S| arithmetic operations over 𝔽_{2ⁿ}.
 - Highly parallelizable.
- Query complexity is $2 \log |S|$.
- Soundness: $\Pr[Reject|dist(f,C) = \delta] \ge \min\left(\delta, \frac{1}{4} - \frac{3d}{4|S|}\right) - 3\frac{|S|}{|\mathbb{F}_{2n}|}.$
 - Close to δ in the unique-decoding-radius.
 - Shown to be tight there.

Our result

Features

A peak under the hood

Low-degree testing in the Interactive-Oracle-Proof model

- Redundancy addition: Prover transforms univariate polynomial p(x) into a bivariate polynomial Q(x,y)
- Invariant: $\deg_y(Q) = \deg(p)/4$
- Verification: Verifier chooses random x_0 and verifies $q(y) = Q(x_0, y)$ is low-degree
 - By repeating the test recursively
 - Until deg(q) is small enough

Low-degree testing — more details

The transformation $T : \mathbb{F}[x] \to \mathbb{F}[x, y]$ is basically a biased version of [?]:

- $p(x) \in \mathbb{F}[x]$ is evaluated over $V = \text{Span}\{b_1, b_2, \dots, b_n\}$
- Define:
 - $V_0 := \text{Span}\{b_1, b_2\}$ • $V_1 := \text{Span}\{b_3, \dots, b_n\}$ • $Z_{V_0}(x) := \prod_{\alpha \in V_0} (x - \alpha)$
- T(p) = Q(x, y) where $Q(x, y) := p(x) \mod (y - Z_{V_0}(x))$
- Features:
 - $\forall x : Q(x, Z_{v_0}(x)) = p(x)$
 - deg_x(Q) < 4
 - $\deg_y(Q) = \deg(p)/4$

A peak under the hood

Low-degree testing — advantages of interactivity

- Deeper recursion is possible due to provers adaptivity
- 'Lightweight' prover algorithm
- Better soundness:
 - Rows are low degree by definition
 - Any column can be queried

◆□▶ ◆母▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで 15/21

A peak under the hood 00000 •000 Summary

Our result

Features

A peak under the hood

Improvements Novel Iow-degree test

Measurements

Summary

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ● ■ • ○ Q ○ 16/21

A peak under the hood

Benchmark : Forensics DNA blacklist

- FBI has the forensics DB
- Rev knows hash digest of the DB
 - Davies-Meyer-AES160
- FBI provide Andy's DNA profiling⁴ result with an integrity proof
- The program verified:

```
def prog(database):
    currHash = 0
for currEntry in database:
    if currEntry matches AndysDNA:
        REJECT
        currHash = Hash(currEntry, currVal)
    if currHash == expectedHash : ACCEPT
    else : REJECT
```


 Our result

Features

A peak under the hood O O O O O O O O Summary

Machine specifications: Prover: CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB Verifier: CPU: Intel(R) Core(TM) i7-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs Security: Security level: 80 bits (Probability of cheating < 2⁻⁸⁰)

Conclusions: Prover asymptotic behaviour as predicted; Proving is ~ ×50K slower than program execution

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ の Q · 18/21

Comparison to other approaches

Machine specifications:

CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB Benchmark:

Executing subset-sum solver for 64K TinyRAM steps (9 elements - exhaustive algorithm).

Comparison to other systems - lower is better (log scale)

STARK

- SCI[BBCGGHPRSTV17] based on IOP.
- KOE[BCGTV13] zkSNARK based on Knowledge Of Exponent hardness.
 Non-succinct setup required.
- IVC[BCTV14] Incrementally Verifiable Computation based on KOE. Setup required (succinct).

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 19/21

Fastest prover; Verification ~ fastest so far; CC lowest; Argument ~ $\times 1K$ longer "best"

		1			÷
0					L.

A peak under the hood 00 00000 0000 Summary

Our result

Features

A peak under the hood

Improvements Novel low-degree test Measurements

Summary

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 20/21

A peak under the hood 00 00000 0000 Summary

A peak under the hood 00 00000 0000

< 17 ►

< ∃ >

Summary

うくで 21/21

A peak under the hood 00 00000 0000

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP.

Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS '92.

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza.

Quasilinear-size zero knowledge from linear-algebraic PCPs. In *Proceedings of the 13th Theory of Cryptography Conference*, TCC '16-A, pages 33–64, 2016.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.

In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

🔋 László Babai, Lance Fortnow, and Carsten Lund.

Non-deterministic exponential time has two-prover interactive protocols.

Computational Complexity, 1:3–40, 1991. Preliminary version appeared in FOCS '90.

- Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.
 Preliminary version appeared in STOC '85.

Joe Kilian.

A note on efficient zero-knowledge proofs and arguments. In *Proceedings of the 24th Annual ACM Symposium on Theory of Computing*, STOC '92, pages 723–732, 1992.

Joe Kilian.

Improved efficient arguments.

In Proceedings of the 15th Annual International Cryptology Conference, CRYPTO '95, pages 311–324, 1995.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 21/21

A peak under the hood 00 00000 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 21/21

Silvio Micali.

Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary version appeared in FOCS '94.

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62, 2016.