Accessing Data while Preserving Privacy

Kobbi Nissim

Georgetown University and CRCS@Harvard

Based on joint work with Georgios Kellaris (Harvard and Boston University), George Kollios (Boston University) and Adam O'Neill (Georgetown University)

> DIMACS Workshop on Outsourcing Computation Securely July 6 – 7, 2017

Outsourced database systems

I need all records of clients named "Gina"

... clients whose age is between 32 and 52

... clients with Sex = M

... clients with Sex = M and Married = F

Point query

Range query

1-way attribute query

2-way attribute query

ſ
G
•

Name	ZIP	Sex	Age	Balance
George	52525	Μ	32	20,012
Gina	02138	F	30	80,003
:	:	:	:	:
Greg	02246	F	28	20,500

Search keys

Outsourced database systems

Outsourced database systems

* In this talk we only consider privacy (not correctness)

We have the power

Great! Can we use SFE [Yao '82, GMW '84], ORAM [Gol '87, GO '96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig '01], ...

This is the real world

Great! We can use SFE [Yao '82, GMW '84], ORAM [Gol '87, GO '96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig '01], ...

I'm convinced

* Kobbi's plea: Let's call these *encodings* instead of encryptions

We should use a system that is secure and practical!

Hell, no!

I will use order preserving and deterministic encryption* schemes

This is the real world

- Implemented systems use relaxed notions of encryption
 - Allows use of existing database indexing mechanisms → efficient querying
- Examples: CryptDB [PRZB'11], Cipherbase [ABEKKRV'13], ...
- Security/privacy not well understood
- Attacks exist:
 - Utilizing leaked access pattern and auxiliary info about data: [Hore, Mehrotra, Canim, Kantarcioglu '12] [Islam, Kuzu, and Kantarcioglu '12], [Islam, Kuzu, Kantarcioglu '14], [Naveed, Kamara, Wright '15]
 - Utilizing leaked access pattern: [Dautrich, Ravishankar '13], [KKNO '16]

Is this just fantasy?

Great! We canuse SFE [Yao '82, GMW '84], ORAM [Gol '87, GO '96], FHE [Gen 09], computational PIR [KO 97], searchable encryption [Song, Wagner, Perrig '01], ...

We will protect not only the access pattern, but all aspects of the computation!

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	
3	
2	
1	
0	

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	2
3	
2	
1	
0	

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	2
3	
2	
1	
0	

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	2
3	
2	
1	
0	

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	2
3	
2	
1	
0	

- Find # queries (out of $\binom{T}{2} + T$) that return i records
 - Can be well estimated given O(T⁴) queries

# records	# queries
4	2
3	4
2	11
1	14
0	5

# records	ds # queries	
4	2	
3	4	
2	11	
1	14	
0	5	

Recovering positions:

• We get: $r_0 \cdot r_4 = f_4$ $r_0 \cdot r_3 + r_1 \cdot r_4 = f_3$ $r_0 \cdot r_2 + r_1 \cdot r_3 + r_2 \cdot r_4 = f_2$ $r_0 \cdot r_1 + r_1 \cdot r_2 + r_2 \cdot r_3 + r_3 \cdot r_4 = f_1$

• Let
$$r_0^2 + r_1^2 + r_2^2 + r_3^2 + r_4^2 = 2c_0 + T + 1 = f_0$$

• Note: $r(x) r^{R}(x) = f_{4} + f_{3}x + f_{2}x^{2} + f_{1}x^{3} + f_{0}x^{4} + f_{1}x^{5} + f_{2}x^{6} + f_{3}x^{7} + f_{4}x^{8} = F(X)$

queries # records f_4 2 4 f_3 3 4 f_2 11 2 f_1 14 1 0 5 C_0

• Define: $r(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4$ $r^R(x) = r_4 + r_3 x + r_2 x^2 + r_1 x^3 + r_0 x^4$

Recovering positions:

• We defined: $r(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4$ $r^R(x) = r_4 + r_3 x + r_2 x^2 + r_1 x^3 + r_0 x^4$

and $r(x) r^{R}(x) = f_{4} + f_{3}x + f_{2}x^{2} + f_{1}x^{3} + f_{0}x^{4} + f_{1}x^{5} + f_{2}x^{6} + f_{3}x^{7} + f_{4}x^{8} = F(X)$

- Factoring F(x) (over integers) can be done in polynomial time [Berlekamp 67]
 - If the factors are two irreducible polynomials, we found r(x), $r^{R}(x)$

# records	# queries	
4	2	
3	4	
2	11	
1	14	
0	5	

A more efficient heuristic

- Factorization may be slow for a large number of records
- Equations: $r_0 \cdot r_4 = f_4$ $r_0 \cdot r_3 + r_1 \cdot r_4 = f_3$ $r_0 \cdot r_2 + r_1 \cdot r_3 + r_2 \cdot r_4 = f_2$ $r_0 \cdot r_1 + r_1 \cdot r_2 + r_2 \cdot r_3 + r_3 \cdot r_4 = f_1$
- Heuristic algorithm: DFS search for a solution
 - For m < n/2:
 - For all integers r_m and r_{n-m} that satisfy the equation, find all feasible r_{m+1} and r_{n-m-1}
 - Otherwise:
 - Prune the combinations that do not satisfy the equation

Is the reconstruction unique? Factors of *F(x)*

- Not necessarily!
 - $r(x)=(x+2)(x+3) = x^2+5x+6$; $r^R(x)=(2x+1)(3x+1) = 6x^2+5x+1$
 - $F(x)=(x+2)(x+3)(2x+1)(3x+1) = 6x^4+35x^3+62x^2+35x+6$
 - F(x) can also be factored as $r(x)=(x+2)(3x+1) = 3x^2+7x+2 ; r^R(x)=(2x+1)(x+3) = 2x^2+7x+3$

Experiments

- 2 HCUP Nationwide Inpatient Sample datasets
- ~1,500 Hospitals, each having ~6,000 patient records
- Indexed attributes: length of stay (T=365) and age (T=27)
- Simulation
 - Reconstruction always successful (up to mirroring)
 - Speed after retrieving T⁴ queries: 40ms on average (max: 3.5 sec)
- Real system
 - CryptDB
 - mySQL server
 - Client
 - Packet sniffer
 - Total attack time for age attribute: 15 hours
- Demonstrates an overlooked weakness that needs to be investigated

What went wrong?

- Observation: "It is clear that if the computed function leaks information on the parties' private inputs, any protocol realizing it, no matter how secure, will also leak this information." [BMNW '07]
 - In our case: Exact #records leaks significant information
- Sounds familiar?
 - Observation partly motivated research into (differential) privacy
- Can differential privacy help?

DP Storage

General construction:

- Use ORAM, inflate communication to preserve privacy
- DP storage given a DP-sanitized version of the data
- Can do updates

• Atomic model:

- Multiple copies of same encrypted record
 - Only require semantic security
- DP storage for point queries, range queries
- In both no/limited protection for queries

Access pattern leakage is not always a problem!

Differential privacy [Dwork McSherry N Smith 06]

Differential privacy [Dwork McSherry N Smith 06]

A (randomized) algorithm $M: X^n \to T$ satisfies (ϵ, δ) -differential privacy if $\forall x, x' \in X^n$ that differ on one entry, $\forall S$ subset of the outcome space T,

$$\Pr_{\mathcal{M}}[M(x) \in S] \le e^{\epsilon} \Pr_{\mathcal{M}}[M(x') \in S] + \delta$$

Prevents reconstruction (and more)

Data sanitization [BLR'08]

• Q: A collection of statistical queries

• Sanitization:

• [BLR 08]: $\alpha \approx (VC(Q) \log |X|)^{1/3} n^{2/3}$

Data sanitization of specific query classes

• Point queries:	Pure DP	Approx. DP
 Index: element of [1, T] Query: a ∈ [1, T]; answer: # records with index = a 	O(log T)	O(1) [BNS'13]
 Range queries: Index: element of [1, T] Query: [a, b] ⊆ [1, T]; answer: # records with index ∈ [a, b] 	O(log T) [BLR'08, DNPR'10, CSS'10	O(2 ^{log* T}) [BNS'13, BNSV'15]
 1-way attribute queries: Index: element of {0, 1}^k Query: i ∈ [1, k]; answer: # records with ith bit of index = 1 	DNRR'15]	
	O(k)	O(k ^{1/2})

DP Storage : a generic construction

- Idea: combination of a DP sanitizer for the query class and ORAM
- Setup:
 - Sanitizer is applied to the data to create a data structure DS, to be stored on the server
 - ORAM used to store all records (+indexing information as needed)
- Answering a query q:
 - q(DS) computed to get a number t of records to retrieve
 - t surpasses the real record number for q by at most $\boldsymbol{\alpha}$
 - ORAM used to retrieve t records
 - Including the real number of records + fake records
- Efficiency:
 - Optimally efficient for storage
 - Communication overhead = α

Summary

- Need a rigorous analysis of inherent security/privacy efficiency tradeoffs for outsourced database systems
 - Optimal efficiency → reconstruction attacks (access pattern and/or communication volume) even with very limited adversaries
 - Can be mitigated by combining ORAM with differential privacy

- Question:
 - What is/are the right notion(s) of privacy we should pursue in this context?
 - Things to consider: privacy of data, privacy for inquirer