Distinguisher-Dependent Simulation

Dakshita Khurana

Joint work with Abhishek Jain, Yael Kalai and Ron Rothblum

Interactive Proofs for NP

Interactive Proof (GMR85, Babai85)

Security Against Malicious Provers

Soundness

Security Against Malicious Verifiers

- Zero-Knowledge (GMR85)
- Distributional Zero-Knowledge (Goldreich93)
- Weak Zero-Knowledge (DNRS99)
- Witness Hiding (FS90)
- Witness Indistinguishability (FS90)
- Strong Witness Indistinguishability (Goldreich93)

Zero-Knowledge

$\forall x$,

Distributional Zero-Knowledge

Weak Zero-Knowledge

Witness Hiding

\forall efficiently sampleable (X, W) with hard to find witnesses,

Witness Indistinguishability

Strong Witness Indistinguishability

Round Complexity Timeline

Overcoming Barriers

Distributional Protocols

- Prover samples instance x from some distribution

Why should we care?

- ZK proofs used to prove correctness of cryptographic computation
- Almost always, instances are chosen from some distribution
- Strong WI, WH by definition are distributional notions

Distributional Protocols

- Prover samples instance x from some distribution

- Useful in secure computation: [KO05, GLOV14, COSV16]
- Our paper: extractable commitments, 3 round 2pc
- Specific 2 \& 3 round protocols: [KS17, K17, ACJ17]
- In 2 round protocols, P sends x together with proof
- Adaptive soundness: P^{*} samples x after V's message
- We will restrict to: delayed-input protocols
- Cheating verifier cannot choose first message depending on x

Distributional Protocols, Delayed-Inpu†

- Prover samples instance x from some distribution

- Simulate the view of malicious V^{*}, when V^{*} is committed to $1^{\text {st }}$ message, before P reveals instance x ?
- Distributional privacy for delayed-input statements.
- Get around negative results!

Our Results

Assuming quasi-polynomial DDH, QR or $\mathrm{N}^{\text {th }}$ residuosity, we get

- 2 Round arguments in the delayed-input settina
- Distributional weak ZK

Sim depends on

- Witness Hiding distinguisher
- Strong Witness Indistinguishability
- 2 Round WI arguments [concurrent work: BGISW17]
- Previously, trapdoor perm (DNOO), b-maps (GOSO6), or iO (BP15)
- 3 Round protocols from polynomial hardness + applications

New Technique:
Black-box Simulation in 2 Rounds

Kalai-Raz (KR09) Transform

PIR scheme

(1) Interactive Proof

(2) 2-Message \boldsymbol{A} soment

KR09: Assuming quasi-polynomially secure PIR, (2) is sound against adaptive PPT P*. Our goal: 2 message arguments for NP with privacy.

- Apply KR09 transform to three round proof of Blum86.

Blum Protocol for Graph Hamiltonicity

Graph G, Hamiltonian H

- Honest verifier zero-knowledge: Sim that knows e can simulate.
- Repeat in parallel to amplify soundness. Preserves honest verifier ZK.

KR09 transform on Blum

Graph G, Hamiltonian H

- Remains honest verifier zero-knowledge.
- What if malicious V^{*} sends malformed query that doesn't encode any bit?
- Prevent this by using a special PIR scheme.

2-Message Oblivious Transfer

Messages $\left(m_{0}, m_{1}\right)$

S cannot guess b

- R cannot distinguish $\mathrm{OT}_{2}\left(m_{0}, m_{1}\right)$ from :
- $\mathrm{OT}_{2}\left(m_{0}, m_{0}\right)$ when $b=0, \mathrm{OR}$
- $\mathrm{OT}_{2}\left(m_{1}, m_{1}\right)$ when $b=1$.

Every string c corresponds to $O T_{1}(b)$ for some bit b

Choice bit b

Known constructions from DDH (NPO1),
Quadratic Residuosity and $\mathbf{N}^{\text {th }}$ Residuosity (HKO5)

Kalai-Raz Transform on Blum using OT

Blum Proof (1)

Argument (2)

KR09: (2) remains sound against PPT provers, even if they choose x adaptively What about privacy?

Kalai-Raz Transform on Blum

Real World

- Every message sent by
- If Sim knew $\left\{e_{i}\right\}_{i \in[\mathbb{N}]}$, the

> Polynomial Simulation??

- Privacy via super-poly simo

Rely on the Distinguisher to find e

Real World

Ideal World

Real World

Simplify: single parallel execution

Unclear how to simulate!

Ideal World

Simplify: single parallel execution

Real World

Ideal World

Can D tell the difference?

- Suppose NOT: eg, D doesn't know randomness for
- a is already computationally hiding, Sim can easily sample a, ${ }^{\text {junk! }}$

Simplify: Single parallel execution

Real World

Ideal World

Can D tell the difference?

- Suppose YES: eg, D knows randomness for e
- Sim can't just sample a, ${ }^{\text {junk! }}$
: will be distinguishable!

Sim will use D to extract e !

Recall: Distributional Simulation

Ideal World

Recall: want a simulator for $x \sim X$, which generates a proof without witness.
However, Sim can sample other $\left(x^{\prime}, w^{\prime}\right) \sim(X, W)$ from the same distribution.

- Sim can also sample proofs for these other $\left(x^{\prime}, w^{\prime}\right) \sim(X, W)$.

Main Simulation Technique

Polynomial Simulation

- Simulator rewinds the distinguisher to learn the OT challenge e.
- Technique extends to extracting $\left\{e_{i}\right\}_{i \in[N]}$ from parallel repetition.

Perspective: Extraction in Cryptography

- Black-box polynomial simulation strategy that requires only 2 messages.
- Previously, rewinding took more rounds

- Towards resolving open problems on round complexity of WH, strong WI.
- Applications to multiple 2-round, 3-round protocols, beyond proofs.

Conclusion \& Open Problems

Round Complexity Timeline

Open Questions

- 2 round protocols from polynomial hardness?
- Kow round public-coin protocols with strong privacy?
- New applications of distinguisher-dependent simulation
- Other black-box/non-black-box techniques for 2 round protocols
- A 2 -round rewinding technique from superpoly DDH in [KS17, BKS17]

Thank you!

