Clean Slate Design vs. Darwinism Service Provider Perspective on GENI

Charles R. Kalmanek Kobus van der Merwe

AT&T Labs Internet & Network Systems Research

GENI Success Scenarios

- Change the research process
 - Sound foundation for future network architectures
 - Experimental evaluation, rather than paper designs
- Create new services
 - Demonstrate new services at scale
 - Attract real users
- Aid the evolution of the Internet
 - Demonstrate ideas that ultimately see real deployment
 - Provide architectural clarity for evolutionary path
- Lead to a future global network
 - Purist: converge on a single new architecture
 - Pluralist: virtualization supporting many architectures

Challenges that GENI Will Face

- The Means Becomes the End
 - Huge investment of intellectual energy in mechanism design
- Focusing on What We Know
 - Yet another forwarding engine...
 - Are we "conceiving the future by letting go of the present" or not?
- Demonstrating new services at scale
 - If it's experimental*, it may not work
 - If it doesn't work, no-one will use it

* The GENI infrastructure is not supposed to be experimental, but it's research uses should be.

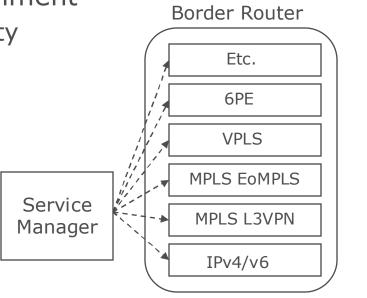
- Clean Slate vs. Darwinism
 - It's hard to predict what will be valuable
 - Network externalities suggest that valuable ideas will morph so they can be incrementally deployed
- Service provider need
 - Make it possible to quickly and safely deploy new services
 - Key GENI concepts, Programmability and Virtualization, do apply.

Example network services?

- Network wide protocol stacks:
 - MPLS, MPLS VPNs, IPv6, VPLS, etc.
- Manipulate existing protocols:
 - RFC 1998: customers signal preference using BGP community values
 - RCP/IRSCP: route selection performed outside routers (e.g., using external information)
- Localized protocols
 - MIRO multipath extends BGP bilaterally
- Cross-layer-aware services
 - Network-aware content distribution
 - Service-aware network monitoring
 - Network-aware server migration

How can Programmability Help?

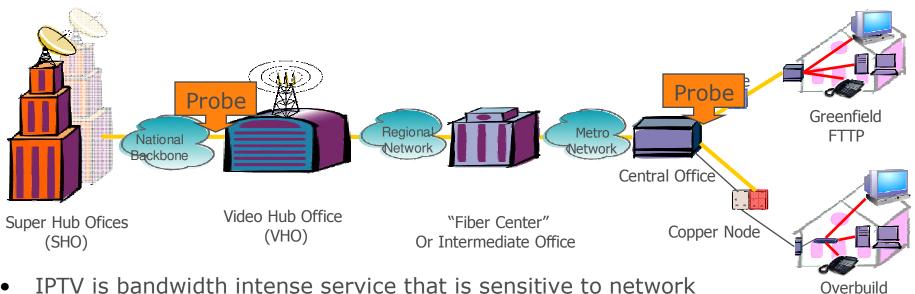
- Platform that allows third party code to be executed on routers
 - Both control and data planes
 - Support changes to network or higher layer functionality
 - Support co-location of other functions (application services, monitoring, etc.)
- Why should we care?
 - Minimizes vendor dependence
 - Allows differentiation / customization
 - Reduces deployment and operations costs
- Impact on existing services?
 - Networks are shared
 - Protocol and resource dependencies
 - Virtualization...


What Do We Mean by Virtualization?

- Slices and slivers
 - Subset of network resources (links/nodes/subnets)
 - Software management framework
- Commercial network virtualization solutions already exist...
 - MPLS
 - Dynamic bandwidth services
 - Router virtualization
- New Ideas???
 - Robust framework for hitless upgrades and incremental deployment
 - Meta-management plane
 - Specific ideas for application/customer specific control planes

What Do We Mean by Virtualization? ...contd.

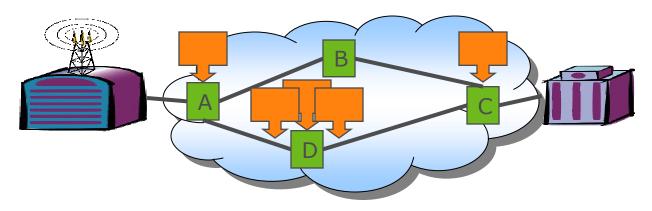
- Commercial example:
 - Logical Routers (Juniper Networks feature)
 - Fairly "complete" virtualization of router functions
 - Each logical router performs independent routing tasks
 - Separation of administrative control
 - Can create a flexible testbed environment
 - Still constrained by vendor functionality



Router programmability

- What does router programmability mean?
 - Ability to add control plane **and** data plane functions to a routing platform
- Commercial example:
 - SoftRouter (Planned Alcatel-Lucent product)
 - Leveraging commodity packet processing and general purpose processor chips, and open source software
 - Add functionality through well defined interfaces
 - Support customization of router functions as well as third party applications

Service-aware network monitoring (e.g., IPTV)



- IPTV is bandwidth intense service that is sensitive to network impairments
- Commercial deployments involve "many moving parts"
- Ensure end-to-end service and/or root cause analysis, need flexible monitoring **anywhere** along the path
 - E.g., what is the video quality for a particular stream when it enters/leaves/traverses the north-east regional network?
- State of the art: statically deploy flexible (programmable) probes in network
 - Problems: slow (deployment), expensive, coverage (always in wrong place)

FTTN

Service-aware network monitoring

- What is the video quality for a particular stream when it enters/leaves/traverses the north-east regional network?
 - Being able to deploy custom network monitoring code at *relevant* node(s)/interface(s) in the network
- E.g., suppose "flow of interest" traverse A-D-C
- Network monitoring application:
 - Determine appropriate nodes (A,D,C)
 - Instantiate appropriate monitoring software
 - Report video quality per probe point

Network Programmability:Need per-interface, programmable,

network monitoring capabilities

at&t

Summary

• Real challenge is how to quickly and safely deploy new services, in light of the Internet today

- Theory of natural selection for network adaptations...
- There is a case for both programmability and virtualization
 - Opportunity may be less about reinventing than evolving
 - Research community has much to contribute
 - Must consider real operational issues (incremental deployment, upgrades, provisioning, monitoring) to be fully successful

