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Background and motivations

I In practical storage systems, rarely are all messages available
at a single source.

I They are distributed at different sources across the network.

I Majority of recent works on distributed storage focus on
repair performance.

I We do not have a good understanding of how index coding
works in distributed storage systems.
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Centralized index coding example and notation

Receiver 1

Has M4

Receiver 2

Has M3,M4

Source
{M1,M2,M3,M4} Encoder

Notation:
Demands | Has

1 | 4
2 | 3, 4
3 | 1, 2
4 | 2, 3

Receiver 3

Has M1,M2

Receiver 4

Has M2,M3

M̂1

M̂2

M̂3

M̂4
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Distributed example

Source 1
M1, M2

Receiver 1

Receiver 2

Receiver 3

Source 2
M3, M4

Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Contributions

I This work looks at distributed index coding.

I And studies the impact of message distribution across the
network on index coding achievable rates (and not repair
properties).
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Road map

I Brief review of existing work.

I Base example of distributed index coding and establishing an
achievable rate region.

I Different message distribution.

I Some messages repeated.

I Optimal message distribution?

I (only if time allows) A simple MDS code.
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Centralized index coding solution

Receiver 1

Notation:
Demands | Has

1 | 4
2 | 3, 4
3 | 1, 2
4 | 2, 3

Source Sends

X1 = M1 + M4

X2 = M1 +M2 +M3 + αM4

α 6= 1

Receiver 2

Source
M1,M2,M3,M4

Encoder

Receivers Decode

M1 = X1 − M4

M2 = X2 − (X1 −M4)︸ ︷︷ ︸
M1

−M3 − αM4

...

Receiver 3

Receiver 4

Xn

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Index coding rate region

I It has been shown in [1]1 that the following rate region is achievable
for this example:

R1 + R2 ≤ 1,

R1 + R3 ≤ 1,

R1 + R4 ≤ 1,

R3 + R4 ≤ 1.

I Resulting in sum rate R1 + R2 + R3 + R4 ≤ 2.

I The method uses the concept of virtual composite message
encoders.

1
[1] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On the capacity region for index

coding,” in IEEE Int. Symp. on Information Theory (ISIT), July 2013, pp. 962–966.
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Virtual composite message encoder

Original Messages:

M1 ∈ [1, 2, 3, · · · , 2nR1 ]
M4 ∈ [1, 2, 3, · · · , 2nR4 ]

Composite Message:

W1,4 ∈ [1, 2, 3, · · · , 2nS1,4 ]

Example: Arbitrary Mapping

(M1,M4) = (1, 1) → W1,4 = 3
(M1,M4) = (1, 2) → W1,4 = 2

...
(M1,M4) = (x, y) → W1,4 = 2nS1,4

...
(M1,M4) = (2nR1 , 2nR4) → W1,4 = 1

Example: Linear Mapping

(M1,M4) → W1,4 = M1 + M4

(M1,M4)
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Virtual composite message encoder

Original Messages:

M1 ∈ [1, 2, 3, · · · , 2nR1 ]
M2 ∈ [1, 2, 3, · · · , 2nR2 ]
M3 ∈ [1, 2, 3, · · · , 2nR3 ]
M4 ∈ [1, 2, 3, · · · , 2nR4 ]

Composite Message:

W1,2,3,4 ∈ [1, 2, 3, · · · , 2nS1,2,3,4 ]

Example: Linear Mapping

(M1,M2,M3,M4) → W1,2,3,4 = M1 + M2 + M3 + αM4

where
M1, · · · ,W1,2,3,4, α ∈ Fq, q = 2m

(M1,M2,M3,M4)



(12/38)*

System block diagram

Virtual En-
coder {1, 4} Receiver 1

Receiver 2

Source
{M1,M2,M3,M4}

Receiver 3

Virtual En-
coder {1, 2, 3, 4} Receiver 4

Channel
Encoder

M1,M4

M1, · · · ,M4

W1,4

W1,2,3,4

Xn

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Existing theory

I Let Kj be index of messages receiver j decodes (j ∈ Kj) and
Aj be its side information. Then the index coding rates for j
R(Kj |Aj) follow

∑

j∈J
Rj <

∑

J ′⊆Kj∪Aj :J ′∩J 6=∅
SJ ′

for all J ⊆ Kj \ Aj . Any composite message in Kj ∪ Aj

common with Kj \ Aj is relevant.

I Achievable rate region is given by

(R1,R2, · · · ,RN) ∈
⋂

j∈[1:N]

⋃

Kj⊆[1:N]:j∈Kj

R(Kj |Aj)
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Existing theory - 2

I Constraints on composite message rates SJ come from the
unit channel capacity (but are somewhat relaxed by receivers’
side information):

∑

J :J(Aj

SJ ≤ 1

for all j ∈ [1 : N].

I Any composite message that is fully embedded in Aj does not
constrain the composite rates.
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Example

K1 = {1},A1 = {4} → R1 ≤ S1,4,

K2 = {1, 2},A2 = {3, 4} →
{
R2 ≤ S1,2,3,4

R1 + R2 ≤ S1,4 + S1,2,3,4,

K3 = {3, 4},A3 = {1, 2} →
{
R3 ≤ S1,2,3,4

R3 + R4 ≤ S1,4 + S1,2,3,4

K4 = {1, 4},A4 = {2, 3} → R1 + R4 ≤ S1,4 + S1,2,3,4,

S1,4 + S1,2,3,4 ≤ 1
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Extension to distributed index coding - base example

I The key difference is that only a subset of composite
messages may be computable in the network that are available
at distributed sources.

Source 1
M1, M2

Receiver 1

Receiver 2

Receiver 3

Source 2
M3, M4

Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Characterizing the rate region for this example
I The set of computable composite indices is

P ′ = {{1}, {2}, {1, 2}, {3}, {4}, {3, 4}}.

K1 = {1},A1 = {4} → R1 ≤ S1,

K2 = {1, 2},A2 = {3, 4} →
{
R2 ≤ S1,2

R1 + R2 ≤ S1 + S1,2

K3 = {3},A3 = {1, 2} → R3 ≤ S3

K2 = {1, 4},A2 = {2, 3} →
{
R4 ≤ S4

R1 + R4 ≤ S1 + S1,2 + S4
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Characterizing the rate region -2

I We consider a binary erasure MAC without noise

Y = X1 + X2

I Effective MAC constraints on composite rates:

S1 + S1,2 ≤ 1

S1 + S1,2 + S3 ≤ 1.5

S3 + S4 ≤ 1

S1 + S1,2 + S4 ≤ 1.5

Example - Binary Erasure MAC - 3 - Key Example

I Therefore, rate R2 = 1/2 is achievable.

I Once we decode W2 for user 2, then we can subtract X2 from
Y = X1 + X2 and then decode W1 with no error. Since this
becomes a noiseless binary symmetric channel with Bernoulli( 1

2 )
input, rate R1 = 1 is achievable.

I So that is how the corner point (1, 1/2) is achievable and due to
symmetry, other corner point is also achievable.

15.3 MULTIPLE-ACCESS CHANNEL 529

0 0

1 1

?

1
2

1
2

1
2

1
2

FIGURE 15.12. Equivalent single-user channel for user 2 of a binary erasure multiple-
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FIGURE 15.13. Capacity region for binary erasure multiple-access channel.

capacity of this channel is 1
2 bit per transmission. Hence when sending at

maximum rate 1 for sender 1, we can send an additional 1
2 bit from sender

2. Later, after deriving the capacity region, we can verify that these rates
are the best that can be achieved. The capacity region for a binary erasure
channel is illustrated in Figure 15.13.
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Achievable rate region

I Rate region is specified by

R1 + R2 ≤ 1, R1 + R2 + R3 ≤ 1.5,

R3 + R4 ≤ 1, R1 + R2 + R4 ≤ 1.5.

I The same sum rate of

R1 + R2 + R3 + R4 ≤ 2

with
R1 = R2 = R3 = R4 = 0.5

is achievable as shown in the next slide.

I Despite distributed storage constraints, MAC transmissions
helped to create key “channel” composite messages.
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Achievable Scheme

Y1 = M1 + M4

Y2 = (M1 ⊕M2) + M3

Source 1
M1, M2

Encoder {1}
Encoder
{1, 2}

Channel
Encoder 1

Receiver 1

Receiver 2

Receiver 3

Source 2
M3, M4

Encoder {3}
Encoder {4}

Channel
Encoder 2

Receiver 4

Binary
Erasure
MAC

Y = X1 +X2

W1 = M1

W1,2 = M1 ⊕M2

W4 = M4

W3 = M3

X1,2 = W1,2

X1,1 = W1

X2,2 = W3

X2,1 = W4

Y1 = M1 +M4

Y2 = (M1 ⊕M2) +M3

M4

M3,M4

M1,M2

M2,M3

M1 (R = 1)

M1

M1 →M2 (R = 1)

M3 (R = 1)

M1 →M4 (R = 1)

M1
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Developed theory

I Let Kj be index of messages receiver j decodes (j ∈ Kj) and
Aj be its side information. Then the index coding rates for j
R(Kj |Aj) follow

∑

j∈J
Rj <

∑

J ′∈(P(Kj∪Aj )∩P ′):J ′∩J 6=∅
SJ

for all J ⊆ Kj \ Aj .

Composite messages in the power set of Kj ∪ Aj that are
computable in the network (belong to P ′) are relevant.
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Developed theory 2

I As before achievable rate region is given by

(R1,R2, · · · ,RN) ∈
⋂

j∈[1:N]

⋃

Kj⊆[1:N]:j∈Kj

R(Kj |Aj)
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Developed theory - 3

I Constraints on composite message rates SJ come from the
MAC capacity (but are somewhat relaxed by receivers’ side
information):

I The rate of every selected composite message that is
overlapping with Kj and not fully embedded in Aj must
belong to MAC capacity region. More mathematically:

I Find a suitable subset of composite messages computable in
the network J ∗ ⊆ P ′

I such that for all j ∈ [1 : N] and for all
J̃ ⊆ J ∗ : ∃J ∈ J̃ : Kj ∩ J̃ 6= ∅ we have

∑

J∈J̃ :J(Aj

SJ

belong to the MAC capacity region M.
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Different message distribution.

I How does message distribution affect performance?

Source 1
M1, M4

Receiver 1

Receiver 2

Receiver 3

Source 2
M2, M3

Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Achievable rate region

I Rate region is specified by more relaxed conditions

R1 + R2 + R3 ≤ 1.5,

R1 + R2 + R4 ≤ 1.5

R1 + R4 ≤ 1

R2≤ 1

R3≤ 1

I 25% higher same sum rate of

R1 + R2 + R3 + R4 ≤ 2.5

with
R1 = R4 = 0.25

and
R2 = R3 = 1

is achievable as shown next.
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Achievable Scheme

2
Y1 = LT (M1) + (M2 ⊕M3)

Y2 = LT (M4) + (M2 ⊕M3)

Source 1
M1, M4

Encoder {1}
Encoder {4}

Channel
Encoder 1

Receiver 1

Receiver 2

Receiver 3

Source 2
M2, M3

Encoder
{2,3}

Channel
Encoder 2

Receiver 4

Binary
Erasure
MAC

Y = X1 +X2

W1 = M1

W4 = M4

W2,3 = M2 ⊕M3

W2,3 = M2 ⊕M3

X1,2 =LT(M4)

X1,1 =LT(M1)

X2,2 = W2,3

X2,1 = W2,3

Y1 =LT(M1)+(M2 ⊕M3)

Y2 =LT(M4)+(M2 ⊕M3)

M4

M3,M4

M1,M2

M2,M3

M1 (R = 0.5)

M1,M2 (R = 0.5, 1)

M2 (R = 1)

M3 (R = 1)

M4,M3 (R = 0.5, 1)

M4 (R = 0.5)

2Or any suitable block erasure code.
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M1 repeated.

I How does message repetition across the network affect performance?

I Sources can cooperate for transmission of M1 to achieve higher
rates.

Source 1
M1, M4

Receiver 1

Receiver 2

Receiver 3

Source 2
M1,M2, M3

Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Achievable rate region

Fix P(x1, x2) = 1
4

R2 ≤ 1, R3 ≤ 1, R4 ≤ 1,

R1 + R2 ≤ 1.5, R1 + R3 ≤ 1.5,

R3 + R4 ≤ 1.5, R1 + R4 ≤ 1.5

50% higher same sum rate of

R1 + R2 + R3 + R4 ≤ 3

with
R1 = R3 = 0.5

and
R2 = R4 = 1

is achievable as shown next.
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Achievable scheme using non-unique decoding

Y = (M1 ⊕M4) + (M1 ⊕M2 ⊕M3)

Y = 0/2→ (M1 ⊕M4) = (M1 ⊕M2 ⊕M3) = 0/1

Y = 1→ X1 ⊕ X2 = 1→ (M1 ⊕M4)⊕ (M1 ⊕M2 ⊕M3) = M2 ⊕M3 ⊕M4 = 1

Source 1
M1, M4

Encoder
{1,4}

Channel
Encoder 1

Receiver 1

Receiver 2

Receiver 3

Source 2
M1,M2, M3

Encoder
{1,2,3}

Channel
Encoder 2

Receiver 4

Binary
Erasure
MAC

Y = X1 +X2

W1,4 = M1 ⊕M4

W1,2,3 = M1 ⊕M2 ⊕M3

X1 = W1,4

X2 = W1,2,3

Y

M4

M3,M4

M1,M2

M2,M3

Y = 0/2→M1 (R = 0.5)

X1 ⊕X2 →M2 (R = 1)

Y = 0/2→M3 (R = 0.5)

X1 ⊕X2 →M4 (R = 1)
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All messages repeated.

Source 1
M1, · · · ,M4

Receiver 1

Receiver 2

Receiver 3

Source 2
M1, · · · ,M4

Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4

R1 + R2 + R3 + R4 ≤ 2× log2 3

is achievable, which is only marginally better than previous case which
needed only 62.5% of storage.
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Optimal (min storage - max rate) solution?

I How can we optimally use distributed storage and MAC capacity?

I All sources should be able to compute all composite messages

I Stripe each message in two parts and store each part on one source

Source 1
{M1, · · · ,M4}p1 Receiver 1

Receiver 2

Receiver 3

Source 2
{M1, · · · ,M4}p2 Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Achievable rate region-symmetric case

I Each half can achieve the rate as if it was centralized index
coding:

R1pk + R2pk ≤ 1, R1pk + R3pk ≤ 1

R1pk + R4pk ≤ 1, R3pk + R4pk ≤ 1

for k = 1, 2.

I Moreover, due to MAC constraints, we can symmetrically
achieve

R1 + R2 ≤ 1.5, R1 + R3 ≤ 1.5

R1 + R4 ≤ 1.5, R3 + R4 ≤ 1.5

As shown next, R1 = R2 = R3 = R4 = 0.75 is achievable.
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Achievable scheme

Source 1
{M1, · · · ,M4}p1

Encoder {1, 4}p1
Encoder
{1, 2, 3, 4}p1

Channel
Encoder 1

Receiver 1

Receiver 2

Receiver 3

Source 2
{M1, · · · ,M4}p2

Encoder {1, 4}p2
Encoder
{1, 2, 3, 4}p2

Channel
Encoder 2

Receiver 4

Binary
Erasure
MAC

Y = X1 + X2

WJ

WJ

X1,2 =LT((M1 +M2 +M3 + αM4)p1)

X1,1 =LT((M1 +M4)p1)

X2,2 =LT((M1 +M2 +M3 + αM4)p2)

X2,1 =LT((M1 +M4)p2)

Y

M4

M3,M4

M1,M2

M2,M3

M1 (R = 0.75)

M2 (R = 0.75)

M3 (R = 0.75)

M4 (R = 0.75)
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Take-home messages

I The distribution of messages across the network can greatly affect
index coding solutions and rates.

I Striping seems to be the optimal thing to do in symmetric
networks, but the effect of heterogeneous conditions is unknown.

I Research is needed to better understand the interactions between
storage, repair bandwidth, data availability, and index coding
transmission rates.

I Research is needed to develop practical scheduling and high rate
transmission schemes for distributed index coding.
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Simple (3,2) MDS code

Source 1
{M1, · · · ,M4}p1 Receiver 1

Receiver 2

MDS coded source

M c
1,4 = αc

1,p1M1,p1 + αc
1,p2M1,p2 +

αc
4,p1M4,p1 + αc

4,p2M4,p2

c = 1, 2

M c
1,2,34 =

∑4
j=1 β

c
j,p1Mj,p1 + βc

j,p2Mj,p2

c = 1, 2

Receiver 3

Source 2
{M1, · · · ,M4}p2 Receiver 4

MAC

M4

M3,M4

M1,M2

M2,M3

M̂1

M̂2

M̂3

M̂4
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Achievable rate region

R1 + R2 ≤ 1.81, R1 + R3 ≤ 1.81

R1 + R4 ≤ 1.81, R3 + R4 ≤ 1.81

I Symmetric rates

R1 = R2 = R3 = R4 = 0.905

are achievable.


