# Transmission and Scheduling Aspects of Distributed Storage and Their Connections with Index Coding 

Parastoo Sadeghi

Research School of Engineering, The Australian National University


## Background and motivations

- In practical storage systems, rarely are all messages available at a single source.
- They are distributed at different sources across the network.
- Majority of recent works on distributed storage focus on repair performance.
- We do not have a good understanding of how index coding works in distributed storage systems.


## Centralized index coding example and notation



## Distributed example



## Contributions

- This work looks at distributed index coding.
- And studies the impact of message distribution across the network on index coding achievable rates (and not repair properties).


## Road map

- Brief review of existing work.
- Base example of distributed index coding and establishing an achievable rate region.
- Different message distribution.
- Some messages repeated.
- Optimal message distribution?
- (only if time allows) A simple MDS code.


## Centralized index coding solution



## Index coding rate region

- It has been shown in [1] ${ }^{1}$ that the following rate region is achievable for this example:

$$
\begin{aligned}
& R_{1}+R_{2} \leq 1, \\
& R_{1}+R_{3} \leq 1, \\
& R_{1}+R_{4} \leq 1, \\
& R_{3}+R_{4} \leq 1
\end{aligned}
$$

- Resulting in sum rate $R_{1}+R_{2}+R_{3}+R_{4} \leq 2$.
- The method uses the concept of virtual composite message encoders.


## Virtual composite message encoder

> | Original Messages: |
| :--- |
| $M_{1} \in\left[1,2,3, \cdots, 2^{n R_{1}}\right]$ |
| $M_{4} \in\left[1,2,3, \cdots, 2^{n R_{4}}\right]$ |

$\xrightarrow{\left(M_{1}, M_{4}\right)} \xrightarrow{$|  Composite Message:  |
| :---: |
| $W_{1,4} \in\left[1,2,3, \cdots, 2^{n S_{1,4}}\right]$ |$}$

Example: Arbitrary Mapping $\left(M_{1}, M_{4}\right)=(1,1) \rightarrow W_{1,4}=3$ $\left(M_{1}, M_{4}\right)=(1,2) \rightarrow W_{1,4}=2$
$\left(M_{1}, M_{4}\right)=(x, y) \rightarrow W_{1,4}=2^{n S_{1,4}}$

$$
\left(M_{1}, M_{4}\right)=\left(2^{n R_{1}}, 2^{n R_{4}}\right) \rightarrow W_{1,4}=1
$$

> Example: Linear Mapping
$\left(M_{1}, M_{4}\right) \rightarrow W_{1,4}=M_{1}+M_{4}$

## Virtual composite message encoder

Original Messages:
$M_{1} \in\left[1,2,3, \cdots, 2^{n R_{1}}\right]$
$M_{2} \in\left[1,2,3, \cdots, 2^{n R_{2}}\right]$
$M_{3} \in\left[1,2,3, \cdots, 2^{n R_{3}}\right]$
$M_{4} \in\left[1,2,3, \cdots, 2^{n R_{4}}\right]$$\quad\left(M_{1}, M_{2}, M_{3}, M_{4}\right) \xrightarrow{2}$

$$
\begin{gathered}
\text { Composite Message: } \\
W_{1,2,3,4} \in\left[1,2,3, \cdots, 2^{n S_{1,2,3,4}}\right]
\end{gathered}
$$

Example: Linear Mapping

$$
\begin{gathered}
\left(M_{1}, M_{2}, M_{3}, M_{4}\right) \rightarrow W_{1,2,3,4}=M_{1}+M_{2}+M_{3}+\alpha M_{4} \\
\text { where } \\
M_{1}, \cdots, W_{1,2,3,4}, \alpha \in F_{q}, \quad q=2^{m}
\end{gathered}
$$

## System block diagram



## Existing theory

- Let $\mathcal{K}_{j}$ be index of messages receiver $j$ decodes $\left(j \in \mathcal{K}_{j}\right)$ and $\mathcal{A}_{j}$ be its side information. Then the index coding rates for $j$ $\mathcal{R}\left(\mathcal{K}_{j} \mid \mathcal{A}_{j}\right)$ follow

$$
\sum_{j \in \mathcal{J}} R_{j}<\sum_{\mathcal{J}^{\prime} \subseteq \mathcal{K}_{j} \cup \mathcal{A}_{j}: \mathcal{J}^{\prime} \cap \mathcal{J} \neq \emptyset} S_{\mathcal{J}^{\prime}}
$$

for all $\mathcal{J} \subseteq \mathcal{K}_{j} \backslash \mathcal{A}_{j}$. Any composite message in $\mathcal{K}_{j} \cup \mathcal{A}_{j}$ common with $\mathcal{K}_{j} \backslash \mathcal{A}_{j}$ is relevant.

- Achievable rate region is given by

$$
\left(R_{1}, R_{2}, \cdots, R_{N}\right) \in \bigcap_{j \in[1: N]} \bigcup_{\mathcal{K}_{j} \subseteq[1: N]: j \in \mathcal{K}_{j}} \mathcal{R}\left(\mathcal{K}_{j} \mid \mathcal{A}_{j}\right)
$$

## Existing theory-2

- Constraints on composite message rates $S_{\mathcal{J}}$ come from the unit channel capacity (but are somewhat relaxed by receivers' side information):

$$
\sum_{\mathcal{J}: \mathcal{J} \subseteq \mathcal{A}_{j}} S_{\mathcal{J}} \leq 1
$$

for all $j \in[1: N]$.

- Any composite message that is fully embedded in $\mathcal{A}_{j}$ does not constrain the composite rates.


## Example

$$
\begin{gathered}
\mathcal{K}_{1}=\{1\}, \mathcal{A}_{1}=\{4\} \rightarrow R_{1} \leq S_{1,4}, \\
\mathcal{K}_{2}=\{1,2\}, \mathcal{A}_{2}=\{3,4\} \rightarrow\left\{\begin{array}{l}
R_{2} \leq S_{1,2,3,4} \\
R_{1}+R_{2} \leq S_{1,4}+S_{1,2,3,4}
\end{array}\right. \\
\mathcal{K}_{3}=\{3,4\}, \mathcal{A}_{3}=\{1,2\} \rightarrow\left\{\begin{array}{l}
R_{3} \leq S_{1,2,3,4} \\
R_{3}+R_{4} \leq S_{1,4}+S_{1,2,3,4}
\end{array}\right. \\
\mathcal{K}_{4}=\{1,4\}, \mathcal{A}_{4}=\{2,3\} \rightarrow \quad R_{1}+R_{4} \leq S_{1,4}+S_{1,2,3,4},
\end{gathered}
$$

$$
S_{1,4}+S_{1,2,3,4} \leq 1
$$



## Extension to distributed index coding - base example

- The key difference is that only a subset of composite messages may be computable in the network that are available at distributed sources.


Characterizing the rate region for this example

- The set of computable composite indices is

$$
\begin{gathered}
\mathcal{P}^{\prime}=\{\{1\},\{2\},\{1,2\},\{3\},\{4\},\{3,4\}\} \\
\mathcal{K}_{1}=\{1\}, \mathcal{A}_{1}=\{4\} \rightarrow \quad R_{1} \leq S_{1}, \\
\mathcal{K}_{2}=\{1,2\}, \mathcal{A}_{2}=\{3,4\} \rightarrow \begin{cases}R_{2} & \leq S_{1,2} \\
R_{1}+R_{2} & \leq S_{1}+S_{1,2}\end{cases} \\
\mathcal{K}_{3}=\{3\}, \mathcal{A}_{3}=\{1,2\} \rightarrow \quad R_{3} \leq S_{3} \\
\mathcal{K}_{2}=\{1,4\}, \mathcal{A}_{2}=\{2,3\} \rightarrow \begin{cases}R_{4} & \leq S_{4} \\
R_{1}+R_{4} & \leq S_{1}+S_{1,2}+S_{4}\end{cases}
\end{gathered}
$$

## Characterizing the rate region -2

- We consider a binary erasure MAC without noise

$$
Y=X_{1}+X_{2}
$$

- Effective MAC constraints on composite rates:

$$
\begin{aligned}
S_{1}+S_{1,2} & \leq 1 \\
S_{1}+S_{1,2}+S_{3} & \leq 1.5 \\
S_{3}+S_{4} & \leq 1 \\
S_{1}+S_{1,2}+S_{4} & \leq 1.5
\end{aligned}
$$



## Achievable rate region

- Rate region is specified by

$$
\begin{array}{ll}
R_{1}+R_{2} \leq 1, & R_{1}+R_{2}+R_{3} \leq 1.5 \\
R_{3}+R_{4} \leq 1, & R_{1}+R_{2}+R_{4} \leq 1.5
\end{array}
$$

- The same sum rate of

$$
R_{1}+R_{2}+R_{3}+R_{4} \leq 2
$$

with

$$
R_{1}=R_{2}=R_{3}=R_{4}=0.5
$$

is achievable as shown in the next slide.

- Despite distributed storage constraints, MAC transmissions helped to create key "channel" composite messages.


## Achievable Scheme

$$
\begin{gathered}
Y_{1}=M_{1}+M_{4} \\
Y_{2}=\left(M_{1} \oplus M_{2}\right)+M_{3}
\end{gathered}
$$



## Developed theory

- Let $\mathcal{K}_{j}$ be index of messages receiver $j$ decodes $\left(j \in \mathcal{K}_{j}\right)$ and $\mathcal{A}_{j}$ be its side information. Then the index coding rates for $j$ $\mathcal{R}\left(\mathcal{K}_{j} \mid \mathcal{A}_{j}\right)$ follow

$$
\sum_{j \in \mathcal{J}} R_{j}<\sum_{\mathcal{J}^{\prime} \in\left(\mathcal{P}\left(\mathcal{K}_{j} \cup \mathcal{A}_{j}\right) \cap \mathcal{P}^{\prime}\right): \mathcal{J}^{\prime} \cap \mathcal{J} \neq \emptyset} S_{\mathcal{J}}
$$

for all $\mathcal{J} \subseteq \mathcal{K}_{j} \backslash \mathcal{A}_{j}$.
Composite messages in the power set of $\mathcal{K}_{j} \cup \mathcal{A}_{j}$ that are computable in the network (belong to $\mathcal{P}^{\prime}$ ) are relevant.

## Developed theory 2

- As before achievable rate region is given by

$$
\left(R_{1}, R_{2}, \cdots, R_{N}\right) \in \bigcap_{j \in[1: N]} \bigcup_{\mathcal{K}_{j} \subseteq[1: N]: j \in \mathcal{K}_{j}} \mathcal{R}\left(\mathcal{K}_{j} \mid \mathcal{A}_{j}\right)
$$

## Developed theory - 3

- Constraints on composite message rates $S_{\mathcal{J}}$ come from the MAC capacity (but are somewhat relaxed by receivers' side information):
- The rate of every selected composite message that is overlapping with $\mathcal{K}_{j}$ and not fully embedded in $\mathcal{A}_{j}$ must belong to MAC capacity region. More mathematically:
- Find a suitable subset of composite messages computable in the network $\mathcal{J}^{*} \subseteq \mathcal{P}^{\prime}$
- such that for all $j \in[1: N]$ and for all
$\tilde{\mathcal{J}} \subseteq \mathcal{J}^{*}: \exists \mathcal{J} \in \tilde{\mathcal{J}}: \mathcal{K}_{j} \cap \tilde{\mathcal{J}} \neq \emptyset$ we have

$$
\sum_{\mathcal{J} \in \tilde{\mathcal{J}}: \mathcal{J} \subsetneq \mathcal{A}_{j}} S_{\mathcal{J}}
$$

belong to the MAC capacity region $\mathcal{M}$.

## Different message distribution.

- How does message distribution affect performance?



## Achievable rate region

- Rate region is specified by more relaxed conditions

$$
\begin{aligned}
R_{1}+R_{2}+R_{3} & \leq 1.5, \\
R_{1}+R_{2}+R_{4} & \leq 1.5 \\
R_{1}+R_{4} & \leq 1 \\
R_{2} & \leq 1 \\
R_{3} & \leq 1
\end{aligned}
$$

- $25 \%$ higher same sum rate of

$$
R_{1}+R_{2}+R_{3}+R_{4} \leq 2.5
$$

with

$$
R_{1}=R_{4}=0.25
$$

and

$$
R_{2}=R_{3}=1
$$

is achievable as shown next.

## Achievable Scheme

2

$$
Y_{1}=L T\left(M_{1}\right)+\left(M_{2} \oplus M_{3}\right)
$$

$$
Y_{2}=L T\left(M_{4}\right)+\left(M_{2} \oplus M_{3}\right)
$$


${ }^{2} \mathrm{Or}$ any suitable block erasure code.
Or any suitable block erasure code.

## $M_{1}$ repeated.

- How does message repetition across the network affect performance?
- Sources can cooperate for transmission of $M_{1}$ to achieve higher rates.



## Achievable rate region

Fix $P\left(x_{1}, x_{2}\right)=\frac{1}{4}$

$$
\begin{aligned}
R_{2} \leq 1, & R_{3} \leq 1, \quad R_{4} \leq 1, \\
R_{1}+R_{2} \leq 1.5, & R_{1}+R_{3} \leq 1.5 \\
R_{3}+R_{4} \leq 1.5, & R_{1}+R_{4} \leq 1.5
\end{aligned}
$$

$50 \%$ higher same sum rate of

$$
R_{1}+R_{2}+R_{3}+R_{4} \leq 3
$$

with

$$
R_{1}=R_{3}=0.5
$$

and

$$
R_{2}=R_{4}=1
$$

is achievable as shown next.

## Achievable scheme using non-unique decoding

$$
\begin{gathered}
Y=\left(M_{1} \oplus M_{4}\right)+\left(M_{1} \oplus M_{2} \oplus M_{3}\right) \\
Y=0 / 2 \rightarrow\left(M_{1} \oplus M_{4}\right)=\left(M_{1} \oplus M_{2} \oplus M_{3}\right)=0 / 1 \\
Y=1 \rightarrow X_{1} \oplus X_{2}=1 \rightarrow\left(M_{1} \oplus M_{4}\right) \oplus\left(M_{1} \oplus M_{2} \oplus M_{3}\right)=M_{2} \oplus M_{3} \oplus M_{4}=1
\end{gathered}
$$



## All messages repeated.



$$
R_{1}+R_{2}+R_{3}+R_{4} \leq 2 \times \log _{2} 3
$$

is achievable, which is only marginally better than previous case which needed only $62.5 \%$ of storage.

## Optimal (min storage - max rate) solution?

- How can we optimally use distributed storage and MAC capacity?
- All sources should be able to compute all composite messages
- Stripe each message in two parts and store each part on one source



## Achievable rate region-symmetric case

- Each half can achieve the rate as if it was centralized index coding:

$$
\begin{array}{ll}
R_{1_{p k}}+R_{2_{p k}} \leq 1, & R_{1_{p k}}+R_{3_{p k}} \leq 1 \\
R_{1_{p k}}+R_{4_{p k}} \leq 1, & R_{3_{p k}}+R_{4_{p k}} \leq 1
\end{array}
$$

for $k=1,2$.

- Moreover, due to MAC constraints, we can symmetrically achieve

$$
\begin{array}{ll}
R_{1}+R_{2} \leq 1.5, & R_{1}+R_{3} \leq 1.5 \\
R_{1}+R_{4} \leq 1.5, & R_{3}+R_{4} \leq 1.5
\end{array}
$$

As shown next, $R_{1}=R_{2}=R_{3}=R_{4}=0.75$ is achievable.

## Achievable scheme



## Take-home messages

- The distribution of messages across the network can greatly affect index coding solutions and rates.
- Striping seems to be the optimal thing to do in symmetric networks, but the effect of heterogeneous conditions is unknown.
- Research is needed to better understand the interactions between storage, repair bandwidth, data availability, and index coding transmission rates.
- Research is needed to develop practical scheduling and high rate transmission schemes for distributed index coding.



## Simple $(3,2)$ MDS code



## Achievable rate region

$$
\begin{array}{ll}
R_{1}+R_{2} \leq 1.81, & R_{1}+R_{3} \leq 1.81 \\
R_{1}+R_{4} \leq 1.81, & R_{3}+R_{4} \leq 1.81
\end{array}
$$

- Symmetric rates

$$
R_{1}=R_{2}=R_{3}=R_{4}=0.905
$$

are achievable.

