Improved Lower Bounds for Coded Caching

Aditya Ramamoorthy

Iowa State University

Joint work with Hooshang Ghasemi

DIMACS Workshop on Network Coding: the Next 15 Years

December 17, 2015

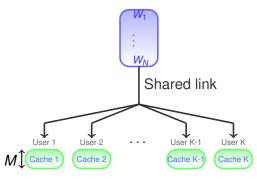
Conventional Content Delivery with Caching



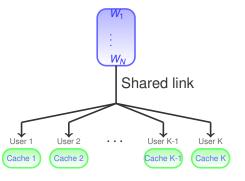
Mechanism for reducing transmission rates from server to clients.

- Conventional approach: clients cache portions of popular content.
- Coding in the cache and coded transmission from server are typically not considered.

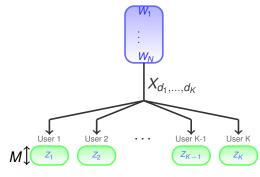
- Server contains N files each of size F bits.
- K users each with a cache of size MF bits.
- The *i*-th user requests file *d_i* ∈ {1,...,*N*}.



- Placement phase: The content of the caches are populated, does not depend on users actual requests.
- Delivery phase: the server transmits a signal of rate RF bits over the shared link so that each user's request is satisfied.



- N files $\{W_n\}_{n=1}^N$,
- *i*-th user requests the file W_{d_i} ,
- Cache content: Z_i,
- Delivery phase signal:
 X_{d1,d2},...,dK,
- Decoding file for *i*-th user: $\hat{W}_{d_1,...,d_K;i}$,
- Probability of error: $\max_{d_1,...,d_K} \max_i P(\hat{W}_{d_1,...,d_K;i} \neq W_{d_i}).$



Achievable Pair (*M*, *R*):

The pair is said to be achievable if for any $\epsilon > 0$ there exist a file size *F* large enough and a (*M*, *R*) caching scheme with probability of at most ϵ .

- N files $\{W_n\}_{n=1}^N$,
- *i*-th user requests the file W_{d_i} ,
- Cache content: Z_i,
- Delivery phase signal:
 X_{d1,d2},...,d_K,
- Decoding file for *i*-th user: $\hat{W}_{d_1,...,d_K;i}$,
- Probability of error: max_{d1},...,d_K max_i P(Ŵ_{d1},...,d_K;i ≠ W_{di}).

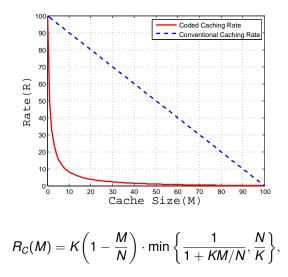
$M \downarrow Z_1 \qquad Z_2 \qquad Z_{K-1}$

User K

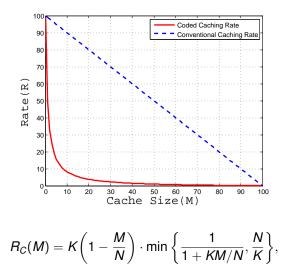
Memory-rate tradeoff

 $R^{\star}(M) = \inf\{R : (M, R) \text{ is achievable}\}.$

Achievable rates N = 1000, K = 100



Achievable rates N = 1000, K = 100



• However, tight lower bounds on $R_C(M)$ are not known at this point.

- Cutset bound [Maddah-Ali & Niesen '13]. Show that $R_C(M)/R^{star}(M) \le 12$ (multiplicative gap).
- Parallel works
 - Improved bounds using Han's inequality [Sengupta, Tandon, Clancy '15]. Show a multiplicative gap of 8.
 - Another approach (can be considered a special case of our work) by [Ajaykrishnan et al. 15].
 - ► Computational approach of [Tian '15] (Arxiv preprint) for the specific case of N = K = 3.

 $\begin{aligned} & 2R^*F + 2MF \ge H(Z_1) + H(X_{1,2,3}) + H(Z_2) + H(X_{3,1,2}) \\ & \ge H(Z_1, X_{1,2,3}) + H(Z_2, X_{3,1,2}) \\ & \ge I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2}) \\ & + H(Z_2, X_{3,1,2}|W_1) \end{aligned}$

 $I(W_1; Z_1, X_{1,2,3}) = H(W_1) - H(W_1|Z_1, X_{1,2,3})$ $\geq F(1 - \epsilon)$

 $2R^{*}F + 2MF \ge H(Z_{1}) + H(X_{1,2,3}) + H(Z_{2}) + H(X_{3,1,2})$ $\ge H(Z_{1}, X_{1,2,3}) + H(Z_{2}, X_{3,1,2})$ $\ge I(W_{1}; Z_{1}, X_{1,2,3}) + H(Z_{1}, X_{1,2,3}|W_{1}) + I(W_{1}; Z_{2}, X_{3,1,2})$ $+ H(Z_{2}, X_{3,1,2}|W_{1})$

 $2R^{*}F + 2MF \ge H(Z_{1}) + H(X_{1,2,3}) + H(Z_{2}) + H(X_{3,1,2})$ $\ge H(Z_{1}, X_{1,2,3}) + H(Z_{2}, X_{3,1,2})$ $\ge I(W_{1}; Z_{1}, X_{1,2,3}) + H(Z_{1}, X_{1,2,3}|W_{1}) + I(W_{1}; Z_{2}, X_{3,1,2})$ $+ H(Z_{2}, X_{3,1,2}|W_{1})$

 $\begin{aligned} &2R^*F + 2MF \ge H(Z_1) + H(X_{1,2,3}) + H(Z_2) + H(X_{3,1,2}) \\ &\ge H(Z_1, X_{1,2,3}) + H(Z_2, X_{3,1,2}) \\ &\ge I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2}) \\ &+ H(Z_2, X_{3,1,2}|W_1) \end{aligned}$

 $\begin{aligned} & 2R^*F + 2MF \ge H(Z_1) + H(X_{1,2,3}) + H(Z_2) + H(X_{3,1,2}) \\ & \ge H(Z_1, X_{1,2,3}) + H(Z_2, X_{3,1,2}) \\ & \ge I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2}) \\ & + H(Z_2, X_{3,1,2}|W_1) \end{aligned}$

Writing mutual information another way ...

 $\begin{aligned} &2R^*F + 2MF \ge H(Z_1) + H(X_{1,2,3}) + H(Z_2) + H(X_{3,1,2}) \\ &\ge H(Z_1, X_{1,2,3}) + H(Z_2, X_{3,1,2}) \\ &\ge I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2}) \\ &+ H(Z_2, X_{3,1,2}|W_1) \end{aligned}$

Writing mutual information another way ...

$$I(W_1; Z_1, X_{1,2,3}) = H(W_1) - H(W_1|Z_1, X_{1,2,3})$$

$$\geq F(1 - \epsilon)$$

Since W_1 can be recovered from Z_1 and $X_{1,2,3}$ with ϵ -error.

 $\geq I(W_{1}; Z_{1}, X_{1,2,3}) + H(Z_{1}, X_{1,2,3}|W_{1}) + I(W_{1}; Z_{2}, X_{3,1,2}) \\ + H(Z_{2}, X_{3,1,2}|W_{1}), \\ = 2F(1 - \epsilon) + H(Z_{1}, X_{1,2,3}|W_{1}) + H(Z_{2}, X_{3,1,2}|W_{1}) \\ \geq 2F(1 - \epsilon) + H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1}) \\ = 2F(1 - \epsilon) + I(W_{2}, W_{3}; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1}) \\ + H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1}, W_{2}, W_{3}) \\ \geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

 $\geq I(W_{1}; Z_{1}, X_{1,2,3}) + H(Z_{1}, X_{1,2,3}|W_{1}) + I(W_{1}; Z_{2}, X_{3,1,2})$ $+ H(Z_{2}, X_{3,1,2}|W_{1}),$ $= 2F(1 - \epsilon) + H(Z_{1}, X_{1,2,3}|W_{1}) + H(Z_{2}, X_{3,1,2}|W_{1})$ $\geq 2F(1 - \epsilon) + H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1})$ $= 2F(1 - \epsilon) + I(W_{2}, W_{3}; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1})$ $+ H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1}, W_{2}, W_{3})$ $\geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

 $\geq I(W_{1}; Z_{1}, X_{1,2,3}) + H(Z_{1}, X_{1,2,3}|W_{1}) + I(W_{1}; Z_{2}, X_{3,1,2})$ $+ H(Z_{2}, X_{3,1,2}|W_{1}),$ $= 2F(1 - \epsilon) + H(Z_{1}, X_{1,2,3}|W_{1}) + H(Z_{2}, X_{3,1,2}|W_{1})$ $\geq 2F(1 - \epsilon) + H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1})$ $= 2F(1 - \epsilon) + I(W_{2}, W_{3}; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1})$ $+ H(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}|W_{1}, W_{2}, W_{3})$ $\geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

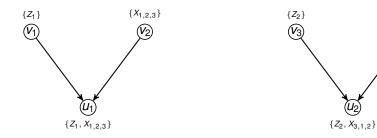
 $\geq I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2})$ $+ H(Z_2, X_{3,1,2}|W_1),$ $= 2F(1 - \epsilon) + H(Z_1, X_{1,2,3}|W_1) + H(Z_2, X_{3,1,2}|W_1)$ $\geq 2F(1 - \epsilon) + H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $= 2F(1 - \epsilon) + I(W_2, W_3; Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $+ H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1, W_2, W_3)$ $\geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

 $\geq I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2})$ $+ H(Z_2, X_{3,1,2}|W_1),$ $= 2F(1 - \epsilon) + H(Z_1, X_{1,2,3}|W_1) + H(Z_2, X_{3,1,2}|W_1)$ $\geq 2F(1 - \epsilon) + H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $= 2F(1 - \epsilon) + I(W_2, W_3; Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $+ H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1, W_2, W_3)$ $\geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

 $\geq I(W_1; Z_1, X_{1,2,3}) + H(Z_1, X_{1,2,3}|W_1) + I(W_1; Z_2, X_{3,1,2})$ $+ H(Z_2, X_{3,1,2}|W_1),$ $= 2F(1 - \epsilon) + H(Z_1, X_{1,2,3}|W_1) + H(Z_2, X_{3,1,2}|W_1)$ $\geq 2F(1 - \epsilon) + H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $= 2F(1 - \epsilon) + I(W_2, W_3; Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1)$ $+ H(Z_1, Z_2, X_{1,2,3}, X_{3,1,2}|W_1, W_2, W_3)$ $\geq 2F(1 - \epsilon) + 2F(1 - \epsilon) = 4F(1 - \epsilon)$

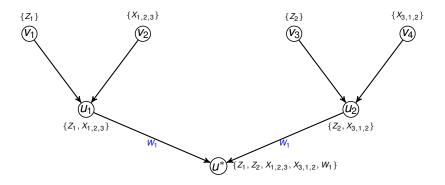
Final Result

- $2R^{\star} + 2M \geq 4$
- \implies $R^{\star} \ge 1$. (Known to be achievable).
- Non-cutset based bound. Generalizes a strategy that appeared in [Maddah-Ali & Niesen '13]

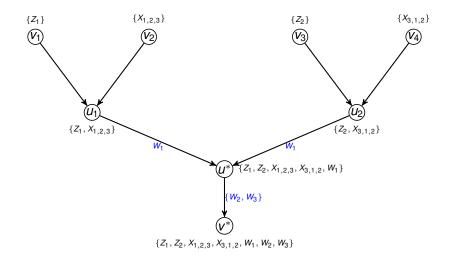


 $\{X_{3,1,2}\}$

 $\overline{V_4}$



The pairs $Z_1, X_{1,2,3}$ and $Z_2, X_{3,1,2}$ each recover a new source W_1 .



The set of cache and delivery phase signals $\{Z_1, Z_2, X_{1,2,3}, X_{3,1,2}\}$ recovers the sources W_1, W_2, W_3 . W_1 has already been recovered earlier. The new sources are thus W_2, W_3 .

Problem Instance: $P(T, \alpha, \beta, L, N, K)$

- Problem Input.
 - ► Number of files *N* and users *K*.
 - Tree *T* with α leaves labeled with delivery phase signals and β leaves labeled with cache signals.
- Algorithm returns lower bound $\alpha R + \beta M \ge L$.

- For a given N, K and α and β .
 - ► Determine the optimal tree *T*^{*} and its labeling so that the lower bound *L* is maximized.
 - Refer to this as the optimal problem instance.
- Solution to this would yield the best possible lower bound using *this* technique.

Sketch of ideas

Observation

For problem instance $P(T, \alpha, \beta, L, N, K)$, the lower bound $L \leq \alpha \min(\beta, K)$. For N large enough, we can always find an instance where $L = \alpha \min(\beta, K)$.

Observation

For problem instance $P(T, \alpha, \beta, L, N, K)$, the lower bound $L \leq \alpha \min(\beta, K)$. For N large enough, we can always find an instance where $L = \alpha \min(\beta, K)$.

Example

- Let $\alpha = 2, \beta = 3$ and $N = \alpha\beta = 6$ and K = 3.
 - Choose cache signals: *Z*₁, *Z*₂, and *Z*₃.
 - Choose delivery phase signals, such that each cache recovers a different file: *X*_{1,2,3} and *X*_{4,5,6}.

Sketch of ideas

Example

Let $\alpha = 2, \beta = 3$ and $N = \alpha\beta = 6$ and K = 3.

- Choose cache signals: Z_1, Z_2 , and Z_3 .
- Choose delivery phase signals, such that each cache recovers a different file: *X*_{1,2,3} and *X*_{4,5,6}.

 $\begin{aligned} 2RF + 3MF &\geq H(X_{1,2,3}) + H(X_{4,5,6}) + H(Z_1) + H(Z_2) + H(Z_3) \\ &\geq H(Z_1, Z_2, Z_3, X_{1,2,3}, X_{4,5,6}) \\ &= H(W_1, W_2, \dots, W_6) \\ &= 6F. \end{aligned}$

Sketch of ideas

Example

Let $\alpha = 2, \beta = 3$ and $N = \alpha\beta = 6$ and K = 3.

- Choose cache signals: Z_1, Z_2 , and Z_3 .
- Choose delivery phase signals, such that each cache recovers a different file: *X*_{1,2,3} and *X*_{4,5,6}.

 $\begin{aligned} 2RF + 3MF &\geq H(X_{1,2,3}) + H(X_{4,5,6}) + H(Z_1) + H(Z_2) + H(Z_3) \\ &\geq H(Z_1, Z_2, Z_3, X_{1,2,3}, X_{4,5,6}) \\ &= H(W_1, W_2, \dots, W_6) \\ &= 6F. \end{aligned}$

Observation

We don't really need six files to get a lower bound of 6F.

Formal definition of saturation number

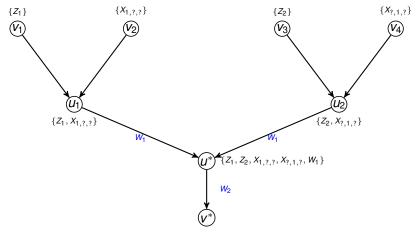
Definition

Saturation number. Consider an instance $P^*(\mathcal{T}^*, \alpha, \beta, L^*, N^*, K)$, where $L^* = \alpha \min(\beta, K)$, such that for all problem instances of the form $P(\mathcal{T}, \alpha, \beta, L^*, N, K)$, we have $N^* \leq N$. We call N^* the saturation number of instances with parameters (α, β, K) and denote it by $N_{sat}(\alpha, \beta, K)$.

- Saturated instances use the files most efficiently in obtaining the lower bound.
- If $N = \alpha \beta$, it is easy to demonstrate an instance where $L = \alpha \beta$ (precisely, the idea of the cutset bound!).

Intuition about saturation number

Suppose that $\alpha = \beta = 2$, $\mathbf{N} = \mathbf{2}$, $K = \mathbf{3}$.



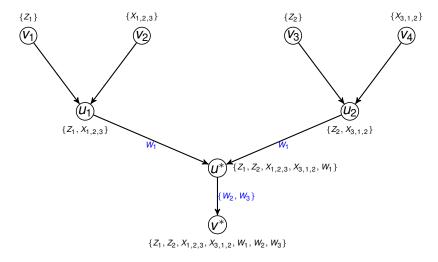
- Regardless of the value of ?'s in the delivery phase signals, the lower bound can be at most 3.
- Cannot reach $\alpha\beta = 4$ under any possible labeling.

Aditya Ramamoorthy

Improved Lower Bounds for Coded Caching 16 / 35

Intuition about saturation number

Suppose that $\alpha = \beta = 2$, $\mathbf{N} = \mathbf{3}$, $K = \mathbf{3}$.



• With N = 3, we can obtain an instance where $L = \alpha \beta = 4$.

Lemma

Let $P = P(T, \alpha, \beta, L, K, N)$ be an instance where $L < \alpha \min(\beta, K)$. Then, we can construct a new instance $P' = P(T', \alpha, \beta, L', K, N + 1)$, where L' = L + 1.

• Simple argument that changes the label of one delivery phase signal to exploit the new file.

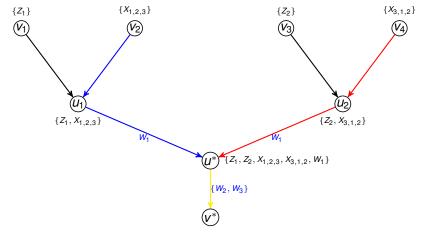
Example: $X_{2,1,2}$ is inefficient

Suppose that $\alpha = \beta = 2$, $\mathbf{N} = \mathbf{2}$, $K = \mathbf{3}$.



Example: Fixing the inefficiency of $X_{2,1,2}$

Suppose that $\alpha = \beta = 2$, $\mathbf{N} = \mathbf{3}$, $K = \mathbf{3}$.



• Changed $X_{2,1,2}$ to $X_{3,1,2}$. Can be done systematically in general.

Main theorem

Theorem

Suppose that there exists an optimal and atomic problem instance $P_o(\mathcal{T} = (V, A), \alpha, \beta, L_o, N, K)$. Then, there exists optimal and atomic problem instance $P^*(\mathcal{T}^* = (V^*, A^*), \alpha, \beta, L^*, N, K)$ where $L^* = L_o$ with the following properties. Let us denote the last edge in P^* with (u^*, v^*) . Let $P_l^* = P(\mathcal{T}^*_{u^*(l)}, \alpha_l, \beta_l, L_l^*, N_l, K)$ and $P_r^* = P(\mathcal{T}^*_{u^*(r)}, \alpha_r, \beta_r, L_r^*, N_r, K)$. Then, we have

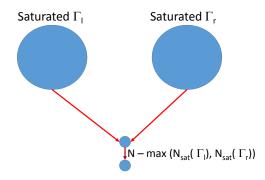
$$L_{I}^{*} = \alpha_{I} \min(\beta_{I}, K),$$

$$L_{r}^{*} = \alpha_{r} \min(\beta_{r}, K), \text{ and}$$

$$L^{*} = \min(\alpha \min(\beta, K), L_{I}^{*} + L_{r}^{*} + N - N_{0}),$$

where $N_0 = \max(N_{sat}(\alpha_I, \beta_I, K), N_{sat}(\alpha_r, \beta_r, K))$. Furthermore, at least one of β_I or β_r is strictly smaller than K.

Implication: Optimal problem instances



• Upper bounds on *N_{sat}* allow us to obtain valid lower bounds as well.

Cutset bound

$$\underbrace{\lfloor N/s \rfloor}_{\alpha} R^{\star} + \underbrace{s}_{\beta} M \geq s \lfloor N/s \rfloor \qquad s = 1, \dots, \min(N, K)$$

Special case of our bound. Simply choose Z₁,..., Z_s as cache nodes, and [N/s] delivery phase signals with disjoint file requests.

Discussion: Cutset bound on $\alpha R + \beta M$

 $N \ge \alpha \beta.$

Example

N = 64, *K* = 12, *M* = 16/3

 $9R^* + 7M \ge 63$ $\implies R^* \ge 2.852$. (best lower bound using cutsets)

Aditya Ramamoorthy

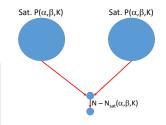
Discussion: Bound $2\alpha R + 2\beta M$ instead

• Suppose $\alpha\beta < N$ but $4\alpha\beta > N$. Then,

$$2\alpha R + 2\beta M \ge 2\alpha\beta + N - N_{sat}(\alpha, \beta, K)$$
$$\implies \alpha R + \beta M \ge \alpha\beta + \frac{N - N_{sat}(\alpha, \beta, K)}{2}.$$

Example

 $18R^{\star} + 14M \ge 126 + 64 - N_{sat}(9, 7, 12)$ $\ge 126 + 21$ $\implies R^{\star} \ge 4.018. \text{ (improvement)}$

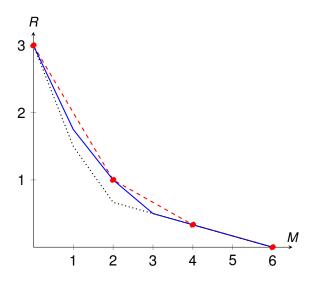


Example

N = 64, K = 12, M = 16/3.

 $\begin{aligned} 12R^{\star} + 8M &\geq \min(12 \times 8, 6 \times 4 + 6 \times 4 + 64 - N_{sat}(6, 4, 12)) \\ &\geq \min(96, 112 - \hat{N}_{sat}(6, 4, 12)) = \min(96, 112 - 17) = 95 \\ &\Longrightarrow R^{\star} \geq \frac{157}{36} = 4.361 \\ &R_c = 5.5 \text{ (achievable rate)} \end{aligned}$

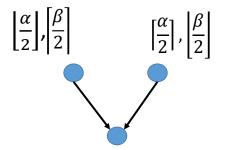
Plot for N = 6, K = 3



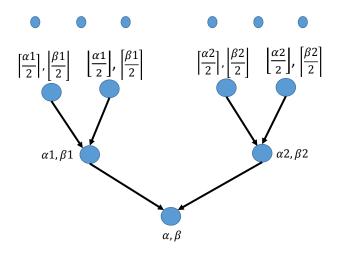
N = 6, K = 3, Blue: Proposed bound, Dotted Black: Cut-set bound, Dashed Red: Achievable rate

Aditya Ramamoorthy

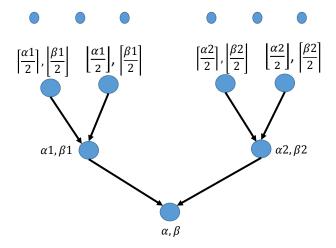
• For given α, β and *K*, consider "roughly" balanced splits.



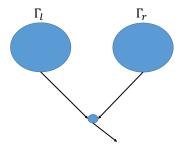
 Continue recursively, at all levels, maintaining roughly balanced splits, until leaves are reached.



• Use $N = \alpha \beta$ files to obtain an instance with lower bound $L = \alpha \beta$.



- Structural properties of saturated instances.
- Let Γ₁ be the file indices used in the left branch of some node (likewise Γ_r).
- Then, either $\Gamma_I \subseteq \Gamma_r$ or $\Gamma_r \subseteq \Gamma_I$.
- Procedure to (iteratively) modify the instance so that this condition is met at all nodes; number of files is guaranteed to decrease at each step.



• Using this fact and a little more insight and analysis of saturated instances, we have for $\beta \leq K$

 Using this fact and a little more insight and analysis of saturated instances, we have for β ≤ K

$$egin{aligned} & \mathcal{N}_{\mathit{sat}}(lpha,eta,\mathcal{K}) \leq rac{2lphaeta+lpha+eta}{3} \ & < lphaeta$$
 (for large enough values of $lpha$ and eta)

Multiplicative gap results

• Nontrivial upper bound on $N_{sat}(\alpha, \beta, K)$ when $\beta \leq K$.

$$egin{aligned} & \mathcal{N}_{\textit{sat}}(lpha,eta,\mathcal{K}) \leq rac{2lphaeta+lpha+eta}{3} \ & < lphaeta$$
 (for large enough values of $lpha$ and eta)

• With some work, this yields a multiplicative gap of at most 4 between our lower bound and the achievability scheme.

$$\frac{R_C(M)}{R^*(M)} \le 4.$$

Comparison with existing results

• Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.

Comparison with existing results

- Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.
- Approach of [Sengupta, Tandon, Clancy '15]. Head to head comparison is hard. However, the following conclusions can be drawn
 - \blacktriangleright Our bound is superior for reasonably large α and β

$$\frac{1}{\alpha} + \frac{1}{\beta} \leq \frac{1}{2}$$

- For small values of $M \le 1$, their bound is better, especially when $N \le K$.
- We have a better multiplicative gap.

Comparison with existing results

- Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.
- Approach of [Sengupta, Tandon, Clancy '15]. Head to head comparison is hard. However, the following conclusions can be drawn
 - \blacktriangleright Our bound is superior for reasonably large α and β

$$\frac{1}{\alpha} + \frac{1}{\beta} \leq \frac{1}{2}$$

- For small values of $M \le 1$, their bound is better, especially when $N \le K$.
- We have a better multiplicative gap.
- Approach of [Tian '15] for the case of N = K = 3 has one inequality that is strictly better than us. However, it is unclear whether this approach is practical for arbitrary N and K.

Comic Relief: The Next 15 years.

Aditya Ramamoorthy

Comic Relief: The Next 15 years.

• Albert Einstein: "I never think of the future, it comes soon enough."

Comic Relief: The Next 15 years.

• Albert Einstein: "I never think of the future, it comes soon enough."

• Niels Bohr: "Prediction is very difficult, especially about the future."