Improved Lower Bounds for Coded Caching

Aditya Ramamoorthy

Iowa State University
Joint work with Hooshang Ghasemi
DIMACS Workshop on Network Coding: the Next 15 Years

December 17, 2015

Conventional Content Delivery with Caching

- Mechanism for reducing transmission rates from server to clients.
- Conventional approach: clients cache portions of popular content.
- Coding in the cache and coded transmission from server are typically not considered.

Coded Caching Formulation [Maddah-Ali \& Niesen '13]

- Server contains N files each of size F bits.
- K users each with a cache of size MF bits.
- The i-th user requests file $d_{i} \in\{1, \ldots, N\}$.

Coded Caching Formulation [Maddah-Ali \& Niesen '13]

(1) Placement phase: The content of the caches are populated, does not depend on users actual requests.
(2) Delivery phase: the server transmits a signal of rate RF bits over the shared link so that each user's request is satisfied.

Coded Caching Formulation [Maddah-Ali \& Niesen '13]

- N files $\left\{W_{n}\right\}_{n=1}^{N}$,
- i-th user requests the file $W_{d_{i}}$,
- Cache content: Z_{i},
- Delivery phase signal: $X_{d_{1}, d_{2}, \ldots, d_{K}}$,
- Decoding file for i-th user: $\hat{W}_{d_{1}, \ldots, d_{k} ;} ;$
- Probability of error:
$\max _{d_{1}, \ldots, d_{k}} \max _{i} P\left(\hat{W}_{d_{1}, \ldots, d_{k} ; i} \neq W_{d_{i}}\right)$.

Achievable Pair (M, R):

The pair is said to be achievable if for any $\epsilon>0$ there exist a file size F large enough and a (M, R) caching scheme with probability of at most ϵ.

Coded Caching Formulation [Maddah-Ali \& Niesen '13]

- N files $\left\{W_{n}\right\}_{n=1}^{N}$,
- i-th user requests the file $W_{d i}$,
- Cache content: Z_{i},
- Delivery phase signal: $X_{d_{1}, d_{2}, \ldots, d_{K}}$,
- Decoding file for i-th user:
$\hat{W}_{d_{1}, \ldots, d_{K} ; i}$,
- Probability of error:
$\max _{d_{1}, \ldots, d_{K}} \max _{i} P\left(\hat{W}_{d_{1}, \ldots, d_{K} ; i} \neq W_{d_{i}}\right)$.

Memory-rate tradeoff

$$
R^{\star}(M)=\inf \{R:(M, R) \text { is achievable }\} .
$$

Achievable rates $N=1000, K=100$

Achievable rates $N=1000, K=100$

- However, tight lower bounds on $R_{C}(M)$ are not known at this point.

Related Work

- Cutset bound [Maddah-Ali \& Niesen '13]. Show that $R_{C}(M) / R^{\text {star }}(M) \leq 12$ (multiplicative gap).
- Parallel works
- Improved bounds using Han's inequality [Sengupta, Tandon, Clancy '15]. Show a multiplicative gap of 8.
- Another approach (can be considered a special case of our work) by [Ajaykrishnan et al. 15].
- Computational approach of [Tian '15] (Arxiv preprint) for the specific case of $N=K=3$.

An Example: $N=K=3$ and $M=1$.

$2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right)$
$\geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right)$
$\geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right)$ $+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)$

$I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)=H\left(W_{1}\right)-H\left(W_{1} \mid Z_{1}, X_{1,2,3}\right)$ $\geq F(1-\epsilon)$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& 2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right) \\
& \geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right)$
$\geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right)$
$\geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right)$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& 2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right) \\
& \geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right) \\
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& 2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right) \\
& \geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right) \\
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)
\end{aligned}
$$

Writing mutual information another way ...

$$
I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)=H\left(W_{1}\right)-H\left(W_{1} \mid Z_{1}, X_{1,2,3}\right)
$$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& 2 R^{\star} F+2 M F \geq H\left(Z_{1}\right)+H\left(X_{1,2,3}\right)+H\left(Z_{2}\right)+H\left(X_{3,1,2}\right) \\
& \geq H\left(Z_{1}, X_{1,2,3}\right)+H\left(Z_{2}, X_{3,1,2}\right) \\
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)
\end{aligned}
$$

Writing mutual information another way ...

$$
\begin{aligned}
& I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)=H\left(W_{1}\right)-H\left(W_{1} \mid Z_{1}, X_{1,2,3}\right) \\
& \geq F(1-\epsilon)
\end{aligned}
$$

Since W_{1} can be recovered from Z_{1} and $X_{1,2,3}$ with ϵ-error.

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right), \\
& =2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& \geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& +H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}, W_{2}, W_{3}\right) \\
& \geq 2 F(1-\epsilon)+2 F(1-\epsilon)=4 F(1-\epsilon)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$\geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right)$
$+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)$,
$=2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right)$
$\geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right)$
$=2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right)$
$+H\left(Z_{1}, Z_{2}, X_{1.2 .3}, X_{3.1 .2} \mid W_{1}, W_{2}, W_{3}\right)$
$\geq 2 F(1-\epsilon)+2 F(1-\epsilon)=4 F(1-\epsilon)$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& \geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& +H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}, W_{2}, W_{3}\right) \\
& \geq 2 F(1-\epsilon)+2 F(1-\epsilon)=4 F(1-\epsilon)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& \geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& +H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}, W_{2}, W_{3}\right)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& \geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& +H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}, W_{2}, W_{3}\right) \\
& \geq 2 F(1-\epsilon)+2 F(1-\epsilon)=4 F(1-\epsilon)
\end{aligned}
$$

An Example: $N=K=3$ and $M=1$.

$$
\begin{aligned}
& \geq I\left(W_{1} ; Z_{1}, X_{1,2,3}\right)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+I\left(W_{1} ; Z_{2}, X_{3,1,2}\right) \\
& +H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+H\left(Z_{1}, X_{1,2,3} \mid W_{1}\right)+H\left(Z_{2}, X_{3,1,2} \mid W_{1}\right) \\
& \geq 2 F(1-\epsilon)+H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& =2 F(1-\epsilon)+I\left(W_{2}, W_{3} ; Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}\right) \\
& +H\left(Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2} \mid W_{1}, W_{2}, W_{3}\right) \\
& \geq 2 F(1-\epsilon)+2 F(1-\epsilon)=4 F(1-\epsilon)
\end{aligned}
$$

Final Result

- $2 R^{\star}+2 M \geq 4$
- $\Longrightarrow R^{\star} \geq 1$. (Known to be achievable).
- Non-cutset based bound. Generalizes a strategy that appeared in [Maddah-Ali \& Niesen '13]

Equivalent description on directed tree

$\left\{X_{1,2,3}\right\}$
(V2)
$\left\{Z_{2}\right\}$
(V)
$\left\{X_{3,1,2}\right\}$
(V)

Equivalent description on directed tree

$\left\{Z_{1}, X_{1,2,3}\right\}$

Equivalent description on directed tree

The pairs $Z_{1}, X_{1,2,3}$ and $Z_{2}, X_{3,1,2}$ each recover a new source W_{1}.

Equivalent description on directed tree

The set of cache and delivery phase signals $\left\{Z_{1}, Z_{2}, X_{1,2,3}, X_{3,1,2}\right\}$ recovers the sources W_{1}, W_{2}, W_{3}. W_{1} has already been recovered earlier. The new sources are thus W_{2}, W_{3}.

Problem Instance: $P(\mathcal{T}, \alpha, \beta, L, N, K)$

- Problem Input.
- Number of files N and users K.
- Tree \mathcal{T} with α leaves labeled with delivery phase signals and β leaves labeled with cache signals.
- Algorithm returns lower bound $\alpha R+\beta M \geq L$.

Natural question

- For a given N, K and α and β.
- Determine the optimal tree \mathcal{T}^{\star} and its labeling so that the lower bound L is maximized.
- Refer to this as the optimal problem instance.
- Solution to this would yield the best possible lower bound using *this* technique.

Sketch of ideas

Observation

For problem instance $P(\mathcal{T}, \alpha, \beta, L, N, K)$, the lower bound $L \leq \alpha \min (\beta, K)$. For N large enough, we can always find an instance where $L=\alpha \min (\beta, K)$.

Sketch of ideas

Observation

For problem instance $P(\mathcal{T}, \alpha, \beta, L, N, K)$, the lower bound $L \leq \alpha \min (\beta, K)$. For N large enough, we can always find an instance where $L=\alpha \min (\beta, K)$.

Example

Let $\alpha=2, \beta=3$ and $N=\alpha \beta=6$ and $K=3$.

- Choose cache signals: Z_{1}, Z_{2}, and Z_{3}.
- Choose delivery phase signals, such that each cache recovers a different file: $X_{1,2,3}$ and $X_{4,5,6}$.

Sketch of ideas

Example

Let $\alpha=2, \beta=3$ and $N=\alpha \beta=6$ and $K=3$.

- Choose cache signals: Z_{1}, Z_{2}, and Z_{3}.
- Choose delivery phase signals, such that each cache recovers a different file: $X_{1,2,3}$ and $X_{4,5,6}$.

$$
\begin{aligned}
2 R F+3 M F & \geq H\left(X_{1,2,3}\right)+H\left(X_{4,5,6}\right)+H\left(Z_{1}\right)+H\left(Z_{2}\right)+H\left(Z_{3}\right) \\
& \geq H\left(Z_{1}, Z_{2}, Z_{3}, X_{1,2,3}, X_{4,5,6}\right) \\
& =H\left(W_{1}, W_{2}, \ldots, W_{6}\right) \\
& =6 F .
\end{aligned}
$$

Sketch of ideas

Example

Let $\alpha=2, \beta=3$ and $N=\alpha \beta=6$ and $K=3$.

- Choose cache signals: Z_{1}, Z_{2}, and Z_{3}.
- Choose delivery phase signals, such that each cache recovers a different file: $X_{1,2,3}$ and $X_{4,5,6}$.

$$
\begin{aligned}
2 R F+3 M F & \geq H\left(X_{1,2,3}\right)+H\left(X_{4,5,6}\right)+H\left(Z_{1}\right)+H\left(Z_{2}\right)+H\left(Z_{3}\right) \\
& \geq H\left(Z_{1}, Z_{2}, Z_{3}, X_{1,2,3}, X_{4,5,6}\right) \\
& =H\left(W_{1}, W_{2}, \ldots, W_{6}\right) \\
& =6 F .
\end{aligned}
$$

Observation

We don't really need six files to get a lower bound of $6 F$.

Formal definition of saturation number

Definition

Saturation number. Consider an instance $P^{*}\left(\mathcal{T}^{*}, \alpha, \beta, L^{*}, N^{*}, K\right)$, where $L^{*}=\alpha \min (\beta, K)$, such that for all problem instances of the form $P\left(\mathcal{T}, \alpha, \beta, L^{*}, N, K\right)$, we have $N^{*} \leq N$. We call N^{*} the saturation number of instances with parameters (α, β, K) and denote it by $N_{s a t}(\alpha, \beta, K)$.

- Saturated instances use the files most efficiently in obtaining the lower bound.
- If $N=\alpha \beta$, it is easy to demonstrate an instance where $L=\alpha \beta$ (precisely, the idea of the cutset bound!).

Intuition about saturation number

Suppose that $\alpha=\beta=2, \mathbf{N}=\mathbf{2}, K=3$.

- Regardless of the value of ?'s in the delivery phase signals, the lower bound can be at most 3 .
- Cannot reach $\alpha \beta=4$ under any possible labeling.

Intuition about saturation number

Suppose that $\alpha=\beta=2, \mathbf{N}=\mathbf{3}, K=3$.

- With $N=3$, we can obtain an instance where $L=\alpha \beta=4$.

Key Lemma

Lemma

Let $P=P(\mathcal{T}, \alpha, \beta, L, K, N)$ be an instance where $L<\alpha \min (\beta, K)$. Then, we can construct a new instance $P^{\prime}=P\left(\mathcal{T}^{\prime}, \alpha, \beta, L^{\prime}, K, N+1\right)$, where $L^{\prime}=L+1$.

- Simple argument that changes the label of one delivery phase signal to exploit the new file.

Example: $X_{2,1,2}$ is inefficient

Suppose that $\alpha=\beta=2, \mathbf{N}=\mathbf{2}, K=3$.

- Identified the inefficiency of $X_{2,1,2}$.

Example: Fixing the inefficiency of $X_{2,1,2}$

Suppose that $\alpha=\beta=2, \mathbf{N}=\mathbf{3}, K=3$.

- Changed $X_{2,1,2}$ to $X_{3,1,2}$. Can be done systematically in general.

Main theorem

Theorem

Suppose that there exists an optimal and atomic problem instance $P_{o}\left(\mathcal{T}=(V, A), \alpha, \beta, L_{o}, N, K\right)$. Then, there exists optimal and atomic problem instance $P^{*}\left(\mathcal{T}^{*}=\left(V^{*}, A^{*}\right), \alpha, \beta, L^{*}, N, K\right)$ where $L^{*}=L_{0}$ with the following properties. Let us denote the last edge in P^{*} with $\left(u^{*}, v^{*}\right)$. Let $P_{I}^{*}=P\left(\mathcal{T}_{u^{*}(I)}^{*}, \alpha_{l}, \beta_{l}, L_{l}^{*}, N_{l}, K\right)$ and $P_{r}^{*}=P\left(\mathcal{T}_{u^{*}(r)}^{*}, \alpha_{r}, \beta_{r}, L_{r}^{*}, N_{r}, K\right)$. Then, we have

$$
\begin{aligned}
& L_{l}^{*}=\alpha_{l} \min \left(\beta_{1}, K\right), \\
& L_{r}^{*}=\alpha_{r} \min \left(\beta_{r}, K\right), \text { and } \\
& L^{*}=\min \left(\alpha \min (\beta, K), L_{l}^{*}+L_{r}^{*}+N-N_{0}\right),
\end{aligned}
$$

where $N_{0}=\max \left(N_{\text {sat }}\left(\alpha_{I}, \beta_{I}, K\right), N_{\text {sat }}\left(\alpha_{r}, \beta_{r}, K\right)\right)$. Furthermore, at least one of β_{l} or β_{r} is strictly smaller than K.

Implication: Optimal problem instances

- Upper bounds on $N_{\text {sat }}$ allow us to obtain valid lower bounds as well.

Discussion

- Cutset bound

$$
\underbrace{\lfloor N / s\rfloor}_{\alpha} R^{\star}+\underbrace{s}_{\beta} M \geq s\lfloor N / s\rfloor \quad s=1, \ldots, \min (N, K)
$$

- Special case of our bound. Simply choose Z_{1}, \ldots, Z_{s} as cache nodes, and $\lfloor N / s\rfloor$ delivery phase signals with disjoint file requests.

Discussion: Cutset bound on $\alpha \boldsymbol{R}+\beta M$

$N \geq \alpha \beta$.
Example
$N=64, K=12, M=16 / 3$

$$
9 R^{\star}+7 M \geq 63
$$

$\Longrightarrow R^{\star} \geq 2.852$. (best lower bound using cutsets)

Discussion: Bound $2 \alpha R+2 \beta M$ instead

- Suppose $\alpha \beta<N$ but $4 \alpha \beta>N$. Then,

$$
\begin{aligned}
2 \alpha R+2 \beta M & \geq 2 \alpha \beta+N-N_{\text {sat }}(\alpha, \beta, K) \\
\Longrightarrow \alpha R+\beta M & \geq \alpha \beta+\frac{N-N_{\text {sat }}(\alpha, \beta, K)}{2} .
\end{aligned}
$$

Example

$$
\begin{aligned}
18 R^{\star}+14 M & \geq 126+64-N_{\text {sat }}(9,7,12) \\
& \geq 126+21 \\
\Longrightarrow R^{\star} & \geq 4.018 . \text { (improvement) }
\end{aligned}
$$

Optimizing over choices for α and β

$$
\begin{aligned}
& \text { Example } \\
& \begin{aligned}
& N=64, K= 12, M=16 / 3 \\
& \begin{aligned}
12 R^{\star}+8 M & \geq \min \left(12 \times 8,6 \times 4+6 \times 4+64-N_{\text {sat }}(6,4,12)\right) \\
& \geq \min \left(96,112-\hat{N}_{\text {sat }}(6,4,12)\right)=\min (96,112-17)=95 \\
\Longrightarrow & R^{\star} \geq \frac{157}{36}=4.361 \\
& R_{c}=5.5 \text { (achievable rate) }
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Plot for $N=6, K=3$

$N=6, K=3$, Blue: Proposed bound, Dotted Black: Cut-set bound, Dashed Red: Achievable rate

Upper bound on saturation number $N_{\text {sat }}(\alpha, \beta, K)$

- For given α, β and K, consider "roughly" balanced splits.

$$
\left[\frac{\alpha}{2}\right],\left[\frac{\beta}{2}\right]\left[\frac{\alpha}{2}\right],\left[\frac{\beta}{2}\right]
$$

Upper bound on saturation number $N_{\text {sat }}(\alpha, \beta, K)$

- Continue recursively, at all levels, maintaining roughly balanced splits, until leaves are reached.

Upper bound on saturation number $N_{\text {sat }}(\alpha, \beta, K)$

- Use $N=\alpha \beta$ files to obtain an instance with lower bound $L=\alpha \beta$.

Upper bound on saturation number $\boldsymbol{N}_{\text {sat }}(\alpha, \beta, K)$

- Structural properties of saturated instances.
- Let $\Gamma_{\text {, }}$ be the file indices used in the left branch of some node (likewise Γ_{r}).
- Then, either $\Gamma_{l} \subseteq \Gamma_{r}$ or $\Gamma_{r} \subseteq \Gamma_{/}$.
- Procedure to (iteratively) modify the instance so that this condition is met at all nodes; number of files is guaranteed to decrease at each step.

Upper bound on saturation number $N_{\text {sat }}(\alpha, \beta, K)$

- Using this fact and a little more insight and analysis of saturated instances, we have for $\beta \leq K$

Upper bound on saturation number $\boldsymbol{N}_{\text {sat }}(\alpha, \beta, K)$

- Using this fact and a little more insight and analysis of saturated instances, we have for $\beta \leq K$

$$
\begin{aligned}
N_{\text {sat }}(\alpha, \beta, K) & \leq \frac{2 \alpha \beta+\alpha+\beta}{3} \\
& <\alpha \beta(\text { for large enough values of } \alpha \text { and } \beta)
\end{aligned}
$$

Multiplicative gap results

- Nontrivial upper bound on $N_{\text {sat }}(\alpha, \beta, K)$ when $\beta \leq K$.

$$
\begin{aligned}
N_{\text {sat }}(\alpha, \beta, K) & \leq \frac{2 \alpha \beta+\alpha+\beta}{3} \\
& <\alpha \beta(\text { for large enough values of } \alpha \text { and } \beta)
\end{aligned}
$$

- With some work, this yields a multiplicative gap of at most 4 between our lower bound and the achievability scheme.

$$
\frac{R_{C}(M)}{R^{*}(M)} \leq 4
$$

Comparison with existing results

- Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.

Comparison with existing results

- Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.
- Approach of [Sengupta,Tandon, Clancy '15]. Head to head comparison is hard. However, the following conclusions can be drawn
- Our bound is superior for reasonably large α and β

$$
\frac{1}{\alpha}+\frac{1}{\beta} \leq \frac{1}{2}
$$

- For small values of $M \leq 1$, their bound is better, especially when $N \leq K$.
- We have a better multiplicative gap.

Comparison with existing results

- Both the cutset bound and the result of [Ajaykrishnan et al. '15] can be considered as specific problem instances in our work. We are strictly better than them.
- Approach of [Sengupta,Tandon, Clancy '15]. Head to head comparison is hard. However, the following conclusions can be drawn
- Our bound is superior for reasonably large α and β

$$
\frac{1}{\alpha}+\frac{1}{\beta} \leq \frac{1}{2}
$$

- For small values of $M \leq 1$, their bound is better, especially when $N \leq K$.
- We have a better multiplicative gap.
- Approach of [Tian '15] for the case of $N=K=3$ has one inequality that is strictly better than us. However, it is unclear whether this approach is practical for arbitrary N and K.

Comic Relief: The Next 15 years.

Comic Relief: The Next 15 years.

- Albert Einstein: "I never think of the future, it comes soon enough."

Comic Relief: The Next 15 years.

- Albert Einstein: "I never think of the future, it comes soon enough."
- Niels Bohr: "Prediction is very difficult, especially about the future."

