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• Powerful generalizations including superposition coding, dirty paper coding,
block Markov coding, and many more...

• Rate regions described in terms of (single-letter) information measures
optimized over pmfs.

• Many important successes: multiple-access channels, (degraded) broadcast
channels, Slepian-Wolf compression, network coding, and many more...

• State-of-the-art elegantly captured in the recent textbook of
El Gamal and Kim.

• Codes with algebraic structure are sought after to mimic the performance
of random i.i.d. codes.
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Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

This Talk: We build on previous work and propose a joint typicality
approach to algebraic network information theory.
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Goal: Send linear combinations of the messages to the receivers.

• Compute-and-forward can serve as a framework for communicating
messages across a network (e.g., relaying, MIMO uplink/downlink,
interference alignment).

• Much of the recent work has focused on Gaussian networks.
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• What about the “1+”? Still open! (Ice wine problem.)
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• Nazer-Cadambe-Ntranos-Caire ’15: Expanded compute-and-forward
framework to link unequal power setting to finite fields.
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• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Decoder: a mapping m̂(yn) ∈ [2nR] for each yn ∈ Yn

Theorem (Shannon ’48)

C = max
pX(x)

I(X;Y )

• Proof relies on random i.i.d. codebooks combined with
joint typicality decoding.
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• Codewords are independent of one another.

• Can directly target an input distribution pX(x).
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q elementwise
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• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.

• Take q-ary expansion of message m into the vector ννν(m) ∈ F
κ
q .

• Linear codeword for message m is un(m) = ννν(m)G⊕ dn.

• Channel input at time i is xi(m) = x(ui(m)).
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• Codewords are pairwise independent of one another.

• Codewords are uniformly distributed over Fn
q .
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• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

• This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the symbol mappings may be quite
different, which will disrupt the linear structure of the codebook.

• Padakandla-Pradhan ’13: It is possible to shape the input
distribution using nested linear codes.

• Basic idea: Generate many codewords to represent one message.
Search in this “bin” to find a codeword with the desired type, i.e.,
multicoding.
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Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).

• Pick generator matrix G and dither dn as before.

• Take q-ary expansions
[

ννν(m) ννν(l)
]

∈ F
κ
q .

• Linear codewords: un(m, l) =
[

ννν(m) ννν(l)
]

G⊕ dn.
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Theorem (Padakandla-Pradhan ’13)

Any rate R satisfying

R < max
p(u), x(u)

I(U ;Y )

is achievable. This is equal to the capacity if q ≥ |X |.

• This is the basic coding framework that we will use for each
transmitter.

• Next, let’s examine a two-transmitter, one-receiver
“compute-and-forward” network.
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• Linear codewords: un1 (m1, l1) = ηηη(m1, l1)G⊕ dn1

un2 (m2, l2) = ηηη(m2, l2)G⊕ dn2
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Computation Problem:

• Consider the coefficients a ∈ F
2
q, a = [a1, a2]

• For mk ∈ [2nRk ], lk ∈ [2nR̂k ], the linear combination of codewords
with coefficient vector a is

a1u
n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[

a1ηηη(m1, l1)⊕ a2ηηη(m2, l2)
]

G⊕ a1d
n
1 ⊕ a2d

n
2

= ννν(t)G⊕ dnw

= wn(t), t ∈ [2nmax{R1+R̂1,R2+R̂2}]



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

pY |X1X2

Y n

Decoder T̂

Computation Problem:

• Let Mk be the chosen message and Lk the chosen index from the
multicoding step.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

pY |X1X2

Y n

Decoder T̂

Computation Problem:

• Let Mk be the chosen message and Lk the chosen index from the
multicoding step.

• Decoder wants a linear combination of the codewords:

W n(T ) = a1U
n
1 (M1, L1)⊕ a2U

n
2 (M2, L2)



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

pY |X1X2

Y n

Decoder T̂

Computation Problem:

• Let Mk be the chosen message and Lk the chosen index from the
multicoding step.

• Decoder wants a linear combination of the codewords:

W n(T ) = a1U
n
1 (M1, L1)⊕ a2U

n
2 (M2, L2)

• Decoder: t̂(yn) ∈ [2nmax{R1+R̂1,R2+R̂2}], yn ∈ Yn

• Probability of Error: P
(n)
ǫ = P{T 6= T̂}



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

pY |X1X2

Y n

Decoder T̂

Computation Problem:

• Let Mk be the chosen message and Lk the chosen index from the
multicoding step.

• Decoder wants a linear combination of the codewords:

W n(T ) = a1U
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1 (M1, L1)⊕ a2U

n
2 (M2, L2)

• Decoder: t̂(yn) ∈ [2nmax{R1+R̂1,R2+R̂2}], yn ∈ Yn

• Probability of Error: P
(n)
ǫ = P{T 6= T̂}

• A rate pair is achievable if there exists a sequence of codes such that

P
(n)
ǫ → 0 as n → ∞.
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such that (wn(t), yn) ∈ T (n)
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Theorem (Lim-Chen-Nazer-Gastpar Allerton ’15)

A rate pair (R1, R2) is achievable if

R1 < I(W ;Y )− I(W ;U2),

R2 < I(W ;Y )− I(W ;U1),

for some p(u1)p(u2) and functions x1(u1), x2(u2), where Uk = Fq,

k = 1, 2, and W = a1U1 ⊕ a2U2.
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Theorem (Lim-Chen-Nazer-Gastpar Allerton ’15)

A rate pair (R1, R2) is achievable if

R1 < I(W ;Y )− I(W ;U2),

R2 < I(W ;Y )− I(W ;U1),

for some p(u1)p(u2) and functions x1(u1), x2(u2), where Uk = Fq,

k = 1, 2, and W = a1U1 ⊕ a2U2.

• Padakandla-Pradhan ’13: Special case where R1 = R2.
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• Notice that the Lk depend on the codebook so Y n and W n(t) are
not independent.

• To get around this issue, we analyze

P(E) =
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{
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ǫ , Un
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ǫ , Un

2 (0, 0) ∈ T (n)
ǫ |M

}

• Conditioned on M, Y n → (Un
1 (0, 0), U

n
2 (0, 0)) → W n(t)

• P(E) tends to zero as n → ∞ if

Rk + R̂k + R̂1 + R̂2

< I(W ;Y ) +D(pW ||pq) +D(pU1
||pq) +D(pU2

||pq)
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Compute-and-Forward over a Gaussian MAC

• Consider a Gaussian MAC with real-valued channel output
Y = h1X1 + h2X2 + Z

• Want to recover a1X
n
1 + a2X

n
2 for some integers a1, a2.

• Gaussian noise: Z ∼ N (0, 1)

• Usual power constraint: E[X2
k ] ≤ P

• Via Gaussian quantization arguments, we can recover the following
theorem.

Theorem (Nazer-Gastpar ’11)

For any channel vector h and integer coefficient vector a, any rate

tuple satisfying Rk < Rcomp(h,a) for k s.t. ak 6= 0 is achievable where

Rcomp(h,a) =
1

2
log+

(

P

aT
(

P−1I+ hhT
)−1

a

)
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Beyond One Linear Combination

• In some scenarios, it is of interest to decode two or more linear
combinations at each receiver.

• For example, Ordentlich-Erez-Nazer ’14 approximates the sum
capacity of the symmetric Gaussian interference channel via
decoding two linear combinations.

• Ordentlich-Erez-Nazer ’13 improves upon compute-and-forward for
two or more linear combinations via successive cancellation.

• What about jointly decoding the linear combinations?

• Ordentlich-Erez ’13 derived bounds for lattice-based codes.

• This talk: We can analyze this via joint typicality decoding to get an
achievable rate region.



Jointly Decoding Two Linear Combinations of K Codewords

• At node k ∈ [1 : K], the message Mk is encoded using the nested
linear coding architecture.
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⊕
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with vanishing probability of error.



Jointly Decoding Two Linear Combinations of K Codewords

• At node k ∈ [1 : K], the message Mk is encoded using the nested
linear coding architecture.

• Let Lk be the chosen index from the multicoding step.

• The objective of the receiver is to compute two linear combinations
of the codewords,

W n
1 (T1) =

K
⊕

k=1

a1ku
n
k(Mk, Lk)

W n
2 (T2) =

K
⊕

k=1

a2ku
n
k(Mk, Lk) ,

with vanishing probability of error.

• Key Technical Issue: Random linear codewords are pairwise
independent, but not 4-wise independent!



Jointly Decoding Two Linear Combinations of K Codewords

Theorem (Lim-Chen-Nazer-Gastpar Allerton ’15)

A rate tuple (R1, . . . , RK) is achievable for computing two linear
combinations if

Rk < min{H(Uk)−H(V |Y ), H(Uk)−H(W1,W2|Y, V )}, k ∈ K1

Rj < I(W2;Y,W1)−H(W2) +H(Uj), j ∈ K2,

Rk +Rj < I(W1,W2;Y )−H(W1,W2) +H(Uk) +H(Uj), k ∈ K1, j ∈ K2

or

Rk < I(W1;Y,W2)−H(W1) +H(Uk), k ∈ K1,

Rj < min{H(Uj)−H(V |Y ), H(Uj)−H(W1,W2|Y, V )}, j ∈ K2,

Rk +Rj < I(W1,W2;Y )−H(W1,W2) +H(Uk) +H(Uj), k ∈ K1, j ∈ K2

for some
∏K

k=1 p(uk) and xk(uk) and non-zero vector bbb ∈ F
2
q,

where Kj = {k ∈ [1 : K] : ajk 6= 0}, j = 1, 2
and V = b1W1 ⊕ b2W2.



Jointly Decoding Two Linear Combinations of K Codewords

Theorem (Lim-Chen-Nazer-Gastpar Allerton ’15)

A rate tuple (R1, . . . , RK) is achievable for computing two linear
combinations if

Rk < min{H(Uk)−H(V |Y ), H(Uk)−H(W1,W2|Y, V )}, k ∈ K1

Rj < I(W2;Y,W1)−H(W2) +H(Uj), j ∈ K2,

Rk +Rj < I(W1,W2;Y )−H(W1,W2) +H(Uk) +H(Uj), k ∈ K1, j ∈ K2

or

Rk < I(W1;Y,W2)−H(W1) +H(Uk), k ∈ K1,

Rj < min{H(Uj)−H(V |Y ), H(Uj)−H(W1,W2|Y, V )}, j ∈ K2,

Rk +Rj < I(W1,W2;Y )−H(W1,W2) +H(Uk) +H(Uj), k ∈ K1, j ∈ K2

for some
∏K

k=1 p(uk) and xk(uk) and non-zero vector bbb ∈ F
2
q,

where Kj = {k ∈ [1 : K] : ajk 6= 0}, j = 1, 2
and V = b1W1 ⊕ b2W2.

• The auxiliary linear combination V plays a key role in classifying
dependent competing pairs in the error analysis.



Multiple-Access via Nested Linear Codes

Theorem (Lim-Chen-Nazer-Gastpar Allerton ’15)

A rate pair (R1, R2) is achievable for the discrete memoryless

multiple-access channel if

R1< max
a 6=0

min{H(U1)−H(W |Y ), H(U1)−H(U1, U2|Y,W )},

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y ),

or

R1 < I(X1;Y |X2),

R2< max
a 6=0

min{H(U2)−H(W |Y ), H(U2)−H(U1, U2|Y,W )},

R1 +R2 < I(X1,X2;Y )

for some p(u1)p(u2) and x1(u1), x2(u2), where W = a1U1 ⊕ a2U2.



Multiple-Access Rate Region
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where I1 = max
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min{H(U1)−H(W |Y ), H(U1)−H(U1, U2|Y,W )}



Multiple-Access Rate Region

R2

I2

0 R1

R2

R1 < I(X1;Y |X2),

R2 < I2,

R1 +R2 < I(X1,X2;Y ),

where I2 = max
a 6=0

min{H(U2)−H(W |Y ), H(U2)−H(U1, U2|Y,W )}



Multiple-Access Rate Region

R2

I2

0 R1I1

• Multiple-access rate region via nested linear codes:

R1 ∪ R2



“Two Help One”
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MAC Capacity Region

• Even if the receiver is only
interested in recovering one
linear combination it can
sometimes help to decode two!
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• Even if the receiver is only
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linear combination it can
sometimes help to decode two!



“Two Help One”
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Union

• Even if the receiver is only
interested in recovering one
linear combination it can
sometimes help to decode two!



Case Study: Two-Sender, Two-Receiver Network
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Case Study: Two-Sender, Two-Receiver Network
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Concluding Remarks

• First steps towards bringing algebraic network information theory
back into the realm of joint typicality.

• Joint decoding rate region for compute-and-forward that
outperforms parallel and successive decoding.


