Towards an Algebraic Network Information Theory

Bobak Nazer (BU)

Joint work with Sung Hoon Lim (EPFL), Chen Feng (UBC), and Michael Gastpar (EPFL).

DIMACS Workshop on Network Coding: The Next 15 Years
December 17th, 2015

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...
- State-of-the-art elegantly captured in the recent textbook of El Gamal and Kim.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...
- State-of-the-art elegantly captured in the recent textbook of El Gamal and Kim.
- Codes with algebraic structure are sought after to mimic the performance of random i.i.d. codes.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.
- Are these just a collection of intriguing examples or elements of a more general theory?

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.
- Are these just a collection of intriguing examples or elements of a more general theory?

This Talk: We build on previous work and propose a joint typicality approach to algebraic network information theory.

Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.

Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.

Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.

Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

- Compute-and-forward can serve as a framework for communicating messages across a network (e.g., relaying, MIMO uplink/downlink, interference alignment).

Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

- Compute-and-forward can serve as a framework for communicating messages across a network (e.g., relaying, MIMO uplink/downlink, interference alignment).
- Much of the recent work has focused on Gaussian networks.

The Usual Approach

The Usual Approach

Computation over Gaussian MACs

- Symmetric Gaussian MAC.

Computation over Gaussian MACs

- Symmetric Gaussian MAC.
- Equal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P
$$

Computation over Gaussian MACs

- Symmetric Gaussian MAC.
- Equal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P
$$

- Use nested lattice codes.

Computation over Gaussian MACs

- Symmetric Gaussian MAC.
- Equal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P
$$

- Use nested lattice codes.

- Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11:

Decoding is successful if the rates satisfy

$$
R_{k}<\frac{1}{2} \log ^{+}\left(\frac{1}{2}+P\right)
$$

Computation over Gaussian MACs

- Symmetric Gaussian MAC.
- Equal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P
$$

- Use nested lattice codes.

- Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11:

Decoding is successful if the rates satisfy

$$
R_{k}<\frac{1}{2} \log ^{+}\left(\frac{1}{2}+P\right)
$$

- Cut-set upper bound is $\frac{1}{2} \log (1+P)$.

Computation over Gaussian MACs

- Symmetric Gaussian MAC.
- Equal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P
$$

- Use nested lattice codes.

- Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11:

Decoding is successful if the rates satisfy

$$
R_{k}<\frac{1}{2} \log ^{+}\left(\frac{1}{2}+P\right)
$$

- Cut-set upper bound is $\frac{1}{2} \log (1+P)$.
- What about the " $1+$ "? Still open! (Ice wine problem.)

Computation over Gaussian MACs

- How about general Gaussian MACs?

Computation over Gaussian MACs

- How about general Gaussian MACs?
- Model using unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

Computation over Gaussian MACs

- How about general Gaussian MACs?
- Model using unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.

Computation over Gaussian MACs

- How about general Gaussian MACs?
- Model using unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Decoding is successful if the rates satisfy

$$
R_{\ell}<\frac{1}{2} \log ^{+}\left(\frac{P_{\ell}}{\sum_{i=1}^{L} P_{i}}+P_{\ell}\right) .
$$

Computation over Gaussian MACs

- How about general Gaussian MACs?
- Model using unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Decoding is successful if the rates satisfy

$$
R_{\ell}<\frac{1}{2} \log ^{+}\left(\frac{P_{\ell}}{\sum_{i=1}^{L} P_{i}}+P_{\ell}\right) .
$$

- Nazer-Cadambe-Ntranos-Caire '15: Expanded compute-and-forward framework to link unequal power setting to finite fields.

Point-to-Point Channels

- Messages: $m \in\left[2^{n R}\right] \triangleq\left\{0, \ldots, 2^{n R}-1\right\}$
- Encoder: a mapping $x^{n}(m) \in \mathcal{X}^{n}$ for each $m \in\left[2^{n R}\right]$
- Decoder: a mapping $\hat{m}\left(y^{n}\right) \in\left[2^{n R}\right]$ for each $y^{n} \in \mathcal{Y}^{n}$

Point-to-Point Channels

- Messages: $m \in\left[2^{n R}\right] \triangleq\left\{0, \ldots, 2^{n R}-1\right\}$
- Encoder: a mapping $x^{n}(m) \in \mathcal{X}^{n}$ for each $m \in\left[2^{n R}\right]$
- Decoder: a mapping $\hat{m}\left(y^{n}\right) \in\left[2^{n R}\right]$ for each $y^{n} \in \mathcal{Y}^{n}$

Theorem (Shannon '48)

$$
C=\max _{p_{X}(x)} I(X ; Y)
$$

Point-to-Point Channels

- Messages: $m \in\left[2^{n R}\right] \triangleq\left\{0, \ldots, 2^{n R}-1\right\}$
- Encoder: a mapping $x^{n}(m) \in \mathcal{X}^{n}$ for each $m \in\left[2^{n R}\right]$
- Decoder: a mapping $\hat{m}\left(y^{n}\right) \in\left[2^{n R}\right]$ for each $y^{n} \in \mathcal{Y}^{n}$

Theorem (Shannon '48)

$$
C=\max _{p_{X}(x)} I(X ; Y)
$$

- Proof relies on random i.i.d. codebooks combined with joint typicality decoding.

- Codewords are independent of one another.
- Can directly target an input distribution $p_{X}(x)$.

Point-to-Point Channels: Linear Codes

Code Construction:

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{q}\right)$. Let G be a realization.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let G be a realization.
- Draw a random shift (or "dither") D^{n} elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let d^{n} be a realization.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let G be a realization.
- Draw a random shift (or "dither") D^{n} elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let d^{n} be a realization.
- Take q -ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{\mathrm{q}}^{\kappa}$.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let G be a realization.
- Draw a random shift (or "dither") D^{n} elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let d^{n} be a realization.
- Take q -ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{\mathrm{q}}^{\kappa}$.
- Linear codeword for message m is $u^{n}(m)=\boldsymbol{\nu}(m) \mathbf{G} \oplus d^{n}$.

Point-to-Point Channels: Linear Codes

Code Construction:

- Pick a finite field \mathbb{F}_{q} and a symbol mapping $x: \mathbb{F}_{\mathrm{q}} \rightarrow \mathcal{X}$.
- Set $\kappa=n R / \log (\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let G be a realization.
- Draw a random shift (or "dither") D^{n} elementwise i.i.d. $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. Let d^{n} be a realization.
- Take q -ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{\mathrm{q}}^{\kappa}$.
- Linear codeword for message m is $u^{n}(m)=\boldsymbol{\nu}(m) \mathbf{G} \oplus d^{n}$.
- Channel input at time i is $x_{i}(m)=x\left(u_{i}(m)\right)$.

Random Linear Codes

- Codewords are pairwise independent of one another.
- Codewords are uniformly distributed over $\mathbb{F}_{\mathrm{q}}^{n}$.

Point-to-Point Channels: Linear Codes

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, Ahlswede '71.

Point-to-Point Channels: Linear Codes

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, Ahlswede '71.
- Gallager '68: Pick \mathbb{F}_{q} with $\mathrm{q} \gg \mathcal{X}$ and choose symbol mapping $x(u)$ to reach c.a.i.d. from $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. This can attain the capacity.

Point-to-Point Channels: Linear Codes

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, Ahlswede '71.
- Gallager '68: Pick \mathbb{F}_{q} with $\mathrm{q} \gg \mathcal{X}$ and choose symbol mapping $x(u)$ to reach c.a.i.d. from $\operatorname{Unif}\left(\mathbb{F}_{q}\right)$. This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.

Point-to-Point Channels: Linear Codes

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, Ahlswede '71.
- Gallager '68: Pick $\mathbb{F}_{\mathbf{q}}$ with $\mathrm{q} \gg \mathcal{X}$ and choose symbol mapping $x(u)$ to reach c.a.i.d. from $\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$. This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.
- Padakandla-Pradhan '13: It is possible to shape the input distribution using nested linear codes.

Point-to-Point Channels: Linear Codes

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, Ahlswede '71.
- Gallager '68: Pick $\mathbb{F}_{\mathbf{q}}$ with $\mathrm{q} \gg \mathcal{X}$ and choose symbol mapping $x(u)$ to reach c.a.i.d. from $\operatorname{Unif}\left(\mathbb{F}_{q}\right)$. This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.
- Padakandla-Pradhan '13: It is possible to shape the input distribution using nested linear codes.
- Basic idea: Generate many codewords to represent one message. Search in this "bin" to find a codeword with the desired type, i.e., multicoding.

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

- Messages $m \in\left[2^{n R}\right]$ and auxiliary indices $l \in\left[2^{n \hat{R}}\right]$.

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

- Messages $m \in\left[2^{n R}\right]$ and auxiliary indices $l \in\left[2^{n \hat{R}}\right]$.
- Set $\kappa=n(R+\hat{R}) / \log (\mathrm{q})$.

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

- Messages $m \in\left[2^{n R}\right]$ and auxiliary indices $l \in\left[2^{n \hat{R}}\right]$.
- Set $\kappa=n(R+\hat{R}) / \log (q)$.
- Pick generator matrix G and dither d^{n} as before.

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

- Messages $m \in\left[2^{n R}\right]$ and auxiliary indices $l \in\left[2^{n \hat{R}}\right]$.
- Set $\kappa=n(R+\hat{R}) / \log (q)$.
- Pick generator matrix G and dither d^{n} as before.
- Take q-ary expansions $[\boldsymbol{\nu}(m) \boldsymbol{\nu}(l)] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$.

Point-to-Point Channels: Linear Codes + Multicoding

Code Construction:

- Messages $m \in\left[2^{n R}\right]$ and auxiliary indices $l \in\left[2^{n \hat{R}}\right]$.
- Set $\kappa=n(R+\hat{R}) / \log (q)$.
- Pick generator matrix G and dither d^{n} as before.
- Take q-ary expansions $[\boldsymbol{\nu}(m) \boldsymbol{\nu}(l)] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$.
- Linear codewords: $u^{n}(m, l)=[\boldsymbol{\nu}(m) \boldsymbol{\nu}(l)] \mathrm{G} \oplus d^{n}$.

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$
- Succeeds w.h.p. if $\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right)$ (where p_{q} is uniform over \mathbb{F}_{q}).

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$
- Succeeds w.h.p. if $\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right)$ (where p_{q} is uniform over $\mathbb{F}_{\mathbf{q}}$).
- Transmit $x_{i}=x\left(u_{i}(m, l)\right)$.

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$
- Succeeds w.h.p. if $\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right)$ (where p_{q} is uniform over \mathbb{F}_{q}).
- Transmit $x_{i}=x\left(u_{i}(m, l)\right)$.

Decoding:

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$
- Succeeds w.h.p. if $\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right)$ (where p_{q} is uniform over \mathbb{F}_{q}).
- Transmit $x_{i}=x\left(u_{i}(m, l)\right)$.

Decoding:

- Joint Typicality Decoding: Find the unique index \hat{m} such that $\left(u^{n}(\hat{m}, \hat{l}), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)$ for some index \hat{l}.

Point-to-Point Channels: Linear Codes + Multicoding

Encoding:

- Fix $p(u)$ and $x(u)$.
- Multicoding: For each m, find an index l such that $u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$
- Succeeds w.h.p. if $\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right)$ (where p_{q} is uniform over $\mathbb{F}_{\mathbf{q}}$).
- Transmit $x_{i}=x\left(u_{i}(m, l)\right)$.

Decoding:

- Joint Typicality Decoding: Find the unique index \hat{m} such that $\left(u^{n}(\hat{m}, \hat{l}), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)$ for some index \hat{l}.
- Succeeds w.h.p. if $R+\hat{R}<I(U ; Y)+D\left(p_{U} \| p_{\mathbf{q}}\right)$

Point-to-Point Channels: Linear Codes + Multicoding

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$
R<\max _{p(u), x(u)} I(U ; Y)
$$

is achievable. This is equal to the capacity if $q \geq|\mathcal{X}|$.

Point-to-Point Channels: Linear Codes + Multicoding

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$
R<\max _{p(u), x(u)} I(U ; Y)
$$

is achievable. This is equal to the capacity if $q \geq|\mathcal{X}|$.

- This is the basic coding framework that we will use for each transmitter.

Point-to-Point Channels: Linear Codes + Multicoding

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$
R<\max _{p(u), x(u)} I(U ; Y)
$$

is achievable. This is equal to the capacity if $\mathrm{q} \geq|\mathcal{X}|$.

- This is the basic coding framework that we will use for each transmitter.
- Next, let's examine a two-transmitter, one-receiver "compute-and-forward" network.

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.
- Set $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.
- Set $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Pick generator matrix G and dithers d_{1}^{n}, d_{2}^{n} as before.

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.
- Set $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Pick generator matrix G and dithers d_{1}^{n}, d_{2}^{n} as before.
- Take q-ary expansions $\left[\boldsymbol{\nu}\left(m_{1}\right) \quad \boldsymbol{\nu}\left(l_{1}\right)\right] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$

$$
\left[\boldsymbol{\nu}\left(m_{2}\right) \boldsymbol{\nu}\left(l_{2}\right) 0\right] \in \mathbb{F}_{\mathbf{q}}^{\kappa} \quad \text { Zero-padding }
$$

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.
- Set $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Pick generator matrix G and dithers d_{1}^{n}, d_{2}^{n} as before.
- Take q-ary expansions $\quad\left[\boldsymbol{\eta}\left(m_{1}, l_{1}\right)\right] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$

$$
\left[\boldsymbol{\eta}\left(m_{2}, l_{2}\right)\right] \in \mathbb{F}_{\mathbf{q}}^{\kappa}
$$

Nested Linear Coding Architecture

Code Construction:

- Messages $m_{k} \in\left[2^{n R_{k}}\right]$ and auxiliary indices $l_{k} \in\left[2^{n \hat{R}_{k}}\right], k=1,2$.
- Set $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Pick generator matrix G and dithers d_{1}^{n}, d_{2}^{n} as before.
- Take q-ary expansions $\quad\left[\boldsymbol{\eta}\left(m_{1}, l_{1}\right)\right] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$

$$
\left[\boldsymbol{\eta}\left(m_{2}, l_{2}\right)\right] \in \mathbb{F}_{\mathbf{q}}^{\kappa}
$$

- Linear codewords: $u_{1}^{n}\left(m_{1}, l_{1}\right)=\boldsymbol{\eta}\left(m_{1}, l_{1}\right) \mathbf{G} \oplus d_{1}^{n}$

$$
u_{2}^{n}\left(m_{2}, l_{2}\right)=\boldsymbol{\eta}\left(m_{2}, l_{2}\right) \mathbf{G} \oplus d_{2}^{n}
$$

Nested Linear Coding Architecture

Encoding:

Nested Linear Coding Architecture

Encoding:

- Fix $p\left(u_{1}\right), p\left(u_{2}\right), x_{1}\left(u_{1}\right)$, and $x_{2}\left(u_{2}\right)$.

Nested Linear Coding Architecture

Encoding:

- Fix $p\left(u_{1}\right), p\left(u_{2}\right), x_{1}\left(u_{1}\right)$, and $x_{2}\left(u_{2}\right)$.
- Multicoding: For each m_{k}, find an index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$.

Nested Linear Coding Architecture

Encoding:

- Fix $p\left(u_{1}\right), p\left(u_{2}\right), x_{1}\left(u_{1}\right)$, and $x_{2}\left(u_{2}\right)$.
- Multicoding: For each m_{k}, find an index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$.
- Succeeds w.h.p. if $\hat{R_{k}}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)$.

Nested Linear Coding Architecture

Encoding:

- Fix $p\left(u_{1}\right), p\left(u_{2}\right), x_{1}\left(u_{1}\right)$, and $x_{2}\left(u_{2}\right)$.
- Multicoding: For each m_{k}, find an index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$.
- Succeeds w.h.p. if $\hat{R_{k}}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)$.
- Transmit $x_{k i}=x_{k}\left(u_{k i}\left(m_{k}, l_{k}\right)\right)$.

Nested Linear Coding Architecture

Encoding:

- Fix $p\left(u_{1}\right), p\left(u_{2}\right), x_{1}\left(u_{1}\right)$, and $x_{2}\left(u_{2}\right)$.
- Multicoding: For each m_{k}, find an index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$.
- Succeeds w.h.p. if $\hat{R_{k}}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)$.
- Transmit $x_{k i}=x_{k}\left(u_{k i}\left(m_{k}, l_{k}\right)\right)$.

Nested Linear Coding Architecture

Computation Problem:

Nested Linear Coding Architecture

Computation Problem:

- Consider the coefficients $\mathbf{a} \in \mathbb{F}_{\mathrm{q}}^{2}, \mathbf{a}=\left[a_{1}, a_{2}\right]$

Nested Linear Coding Architecture

Computation Problem:

- Consider the coefficients $\mathbf{a} \in \mathbb{F}_{\mathrm{q}}^{2}, \mathbf{a}=\left[a_{1}, a_{2}\right]$
- For $m_{k} \in\left[2^{n R_{k}}\right], l_{k} \in\left[2^{n \hat{R}_{k}}\right]$, the linear combination of codewords with coefficient vector a is

$$
\begin{aligned}
& a_{1} u_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} u_{2}^{n}\left(m_{2}, l_{2}\right) \\
& =\left[a_{1} \boldsymbol{\eta}\left(m_{1}, l_{1}\right) \oplus a_{2} \boldsymbol{\eta}\left(m_{2}, l_{2}\right)\right] \mathbf{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n} \\
& =\boldsymbol{\nu}(t) \mathbf{G} \oplus d_{w}^{n} \\
& =w^{n}(t), \quad t \in\left[2^{n \max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}}\right]
\end{aligned}
$$

Nested Linear Coding Architecture

Computation Problem:

- Let M_{k} be the chosen message and L_{k} the chosen index from the multicoding step.

Nested Linear Coding Architecture

Computation Problem:

- Let M_{k} be the chosen message and L_{k} the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

$$
W^{n}(T)=a_{1} U_{1}^{n}\left(M_{1}, L_{1}\right) \oplus a_{2} U_{2}^{n}\left(M_{2}, L_{2}\right)
$$

Nested Linear Coding Architecture

Computation Problem:

- Let M_{k} be the chosen message and L_{k} the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

$$
W^{n}(T)=a_{1} U_{1}^{n}\left(M_{1}, L_{1}\right) \oplus a_{2} U_{2}^{n}\left(M_{2}, L_{2}\right)
$$

- Decoder: $\hat{t}\left(y^{n}\right) \in\left[2^{n \max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}}\right], y^{n} \in \mathcal{Y}^{n}$
- Probability of Error: $\mathrm{P}_{\epsilon}^{(n)}=\mathrm{P}\{T \neq \hat{T}\}$

Nested Linear Coding Architecture

Computation Problem:

- Let M_{k} be the chosen message and L_{k} the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

$$
W^{n}(T)=a_{1} U_{1}^{n}\left(M_{1}, L_{1}\right) \oplus a_{2} U_{2}^{n}\left(M_{2}, L_{2}\right)
$$

- Decoder: $\hat{t}\left(y^{n}\right) \in\left[2^{n \max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}}\right], y^{n} \in \mathcal{Y}^{n}$
- Probability of Error: $\mathrm{P}_{\epsilon}^{(n)}=\mathrm{P}\{T \neq \hat{T}\}$
- A rate pair is achievable if there exists a sequence of codes such that $\mathrm{P}_{\epsilon}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$.

Nested Linear Coding Architecture

Decoding:

- Joint Typicality Decoding: Find an index $t \in\left[2^{n \max \left(R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right)}\right]$ such that $\left(w^{n}(t), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}$.

Nested Linear Coding Architecture

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable if

$$
\begin{aligned}
& R_{1}<I(W ; Y)-I\left(W ; U_{2}\right), \\
& R_{2}<I(W ; Y)-I\left(W ; U_{1}\right),
\end{aligned}
$$

for some $p\left(u_{1}\right) p\left(u_{2}\right)$ and functions $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, where $\mathcal{U}_{k}=\mathbb{F}_{\mathbf{q}}$, $k=1,2$, and $W=a_{1} U_{1} \oplus a_{2} U_{2}$.

Nested Linear Coding Architecture

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable if

$$
\begin{aligned}
& R_{1}<I(W ; Y)-I\left(W ; U_{2}\right), \\
& R_{2}<I(W ; Y)-I\left(W ; U_{1}\right),
\end{aligned}
$$

for some $p\left(u_{1}\right) p\left(u_{2}\right)$ and functions $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, where $\mathcal{U}_{k}=\mathbb{F}_{\mathbf{q}}$, $k=1,2$, and $W=a_{1} U_{1} \oplus a_{2} U_{2}$.

- Padakandla-Pradhan '13: Special case where $R_{1}=R_{2}$.

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.
- Union bound: $\mathrm{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}$.

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.
- Union bound: $\mathrm{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}$.
- Notice that the L_{k} depend on the codebook so Y^{n} and $W^{n}(t)$ are not independent.

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.
- Union bound: $\mathrm{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}$.
- Notice that the L_{k} depend on the codebook so Y^{n} and $W^{n}(t)$ are not independent.
- To get around this issue, we analyze

$$
\mathrm{P}(\mathcal{E})=\sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}, U_{1}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)}, U_{2}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}
$$

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.
- Union bound: $\mathrm{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}$.
- Notice that the L_{k} depend on the codebook so Y^{n} and $W^{n}(t)$ are not independent.
- To get around this issue, we analyze

$$
\mathrm{P}(\mathcal{E})=\sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}, U_{1}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)}, U_{2}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}
$$

- Conditioned on $\mathcal{M}, Y^{n} \rightarrow\left(U_{1}^{n}(0,0), U_{2}^{n}(0,0)\right) \rightarrow W^{n}(t)$

Proof Sketch

- WLOG assume $\mathcal{M}=\left\{M_{1}=0, M_{2}=0, L_{1}=0, L_{2}=0\right\}$.
- Union bound: $\mathrm{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}$.
- Notice that the L_{k} depend on the codebook so Y^{n} and $W^{n}(t)$ are not independent.
- To get around this issue, we analyze

$$
\mathrm{P}(\mathcal{E})=\sum_{t \neq 0} \mathrm{P}\left\{\left(W^{n}(t), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}, U_{1}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)}, U_{2}^{n}(0,0) \in \mathcal{T}_{\epsilon}^{(n)} \mid \mathcal{M}\right\}
$$

- Conditioned on $\mathcal{M}, Y^{n} \rightarrow\left(U_{1}^{n}(0,0), U_{2}^{n}(0,0)\right) \rightarrow W^{n}(t)$
- $\mathrm{P}(\mathcal{E})$ tends to zero as $n \rightarrow \infty$ if

$$
\begin{aligned}
& R_{k}+\hat{R}_{k}+\hat{R}_{1}+\hat{R}_{2} \\
& \quad<I(W ; Y)+D\left(p_{W} \| p_{\mathbf{q}}\right)+D\left(p_{U_{1}} \| p_{\mathbf{q}}\right)+D\left(p_{U_{2}} \| p_{\mathbf{q}}\right)
\end{aligned}
$$

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$
- Want to recover $a_{1} X_{1}^{n}+a_{2} X_{2}^{n}$ for some integers a_{1}, a_{2}.

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$
- Want to recover $a_{1} X_{1}^{n}+a_{2} X_{2}^{n}$ for some integers a_{1}, a_{2}.
- Gaussian noise: $Z \sim \mathcal{N}(0,1)$

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$
- Want to recover $a_{1} X_{1}^{n}+a_{2} X_{2}^{n}$ for some integers a_{1}, a_{2}.
- Gaussian noise: $Z \sim \mathcal{N}(0,1)$
- Usual power constraint: $\mathrm{E}\left[X_{k}^{2}\right] \leq P$

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$
- Want to recover $a_{1} X_{1}^{n}+a_{2} X_{2}^{n}$ for some integers a_{1}, a_{2}.
- Gaussian noise: $Z \sim \mathcal{N}(0,1)$
- Usual power constraint: $\mathrm{E}\left[X_{k}^{2}\right] \leq P$
- Via Gaussian quantization arguments, we can recover the following theorem.

Compute-and-Forward over a Gaussian MAC

- Consider a Gaussian MAC with real-valued channel output $Y=h_{1} X_{1}+h_{2} X_{2}+Z$
- Want to recover $a_{1} X_{1}^{n}+a_{2} X_{2}^{n}$ for some integers a_{1}, a_{2}.
- Gaussian noise: $Z \sim \mathcal{N}(0,1)$
- Usual power constraint: $\mathrm{E}\left[X_{k}^{2}\right] \leq P$
- Via Gaussian quantization arguments, we can recover the following theorem.

Theorem (Nazer-Gastpar '11)

For any channel vector \mathbf{h} and integer coefficient vector \mathbf{a}, any rate tuple satisfying $R_{k}<R_{\text {comp }}(\mathbf{h}, \mathbf{a})$ for k s.t. $a_{k} \neq 0$ is achievable where

$$
R_{\text {comp }}(\mathbf{h}, \mathbf{a})=\frac{1}{2} \log ^{+}\left(\frac{P}{\mathbf{a}^{\top}\left(P^{-1} \mathbf{I}+\mathbf{h h}^{\top}\right)^{-1} \mathbf{a}}\right)
$$

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, Ordentlich-Erez-Nazer '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, Ordentlich-Erez-Nazer '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, Ordentlich-Erez-Nazer '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, Ordentlich-Erez-Nazer '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?
- Ordentlich-Erez '13 derived bounds for lattice-based codes.

Beyond One Linear Combination

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, Ordentlich-Erez-Nazer '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?
- Ordentlich-Erez '13 derived bounds for lattice-based codes.
- This talk: We can analyze this via joint typicality decoding to get an achievable rate region.

Jointly Decoding Two Linear Combinations of K Codewords

- At node $k \in[1: K]$, the message M_{k} is encoded using the nested linear coding architecture.

Jointly Decoding Two Linear Combinations of K Codewords

- At node $k \in[1: K]$, the message M_{k} is encoded using the nested linear coding architecture.
- Let L_{k} be the chosen index from the multicoding step.

Jointly Decoding Two Linear Combinations of K Codewords

- At node $k \in[1: K]$, the message M_{k} is encoded using the nested linear coding architecture.
- Let L_{k} be the chosen index from the multicoding step.
- The objective of the receiver is to compute two linear combinations of the codewords,

$$
\begin{aligned}
& W_{1}^{n}\left(T_{1}\right)=\bigoplus_{k=1}^{K} a_{1 k} u_{k}^{n}\left(M_{k}, L_{k}\right) \\
& W_{2}^{n}\left(T_{2}\right)=\bigoplus_{k=1}^{K} a_{2 k} u_{k}^{n}\left(M_{k}, L_{k}\right),
\end{aligned}
$$

with vanishing probability of error.

Jointly Decoding Two Linear Combinations of K Codewords

- At node $k \in[1: K]$, the message M_{k} is encoded using the nested linear coding architecture.
- Let L_{k} be the chosen index from the multicoding step.
- The objective of the receiver is to compute two linear combinations of the codewords,

$$
\begin{aligned}
& W_{1}^{n}\left(T_{1}\right)=\bigoplus_{k=1}^{K} a_{1 k} u_{k}^{n}\left(M_{k}, L_{k}\right) \\
& W_{2}^{n}\left(T_{2}\right)=\bigoplus_{k=1}^{K} a_{2 k} u_{k}^{n}\left(M_{k}, L_{k}\right)
\end{aligned}
$$

with vanishing probability of error.

- Key Technical Issue: Random linear codewords are pairwise independent, but not 4 -wise independent!

Jointly Decoding Two Linear Combinations of K Codewords

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple $\left(R_{1}, \ldots, R_{K}\right)$ is achievable for computing two linear combinations if

$$
\begin{aligned}
& R_{k}<\min \left\{H\left(U_{k}\right)-H(V \mid Y), H\left(U_{k}\right)-H\left(W_{1}, W_{2} \mid Y, V\right)\right\}, \quad k \in \mathcal{K}_{1} \\
& R_{j}<I\left(W_{2} ; Y, W_{1}\right)-H\left(W_{2}\right)+H\left(U_{j}\right), \quad j \in \mathcal{K}_{2} \\
& R_{k}+R_{j}<I\left(W_{1}, W_{2} ; Y\right)-H\left(W_{1}, W_{2}\right)+H\left(U_{k}\right)+H\left(U_{j}\right), \quad k \in \mathcal{K}_{1}, j \in \mathcal{K}_{2} \\
& \text { or } \\
& R_{k}<I\left(W_{1} ; Y, W_{2}\right)-H\left(W_{1}\right)+H\left(U_{k}\right), \quad k \in \mathcal{K}_{1} \\
& R_{j}<\min \left\{H\left(U_{j}\right)-H(V \mid Y), H\left(U_{j}\right)-H\left(W_{1}, W_{2} \mid Y, V\right)\right\}, \quad j \in \mathcal{K}_{2} \\
& R_{k}+R_{j}<I\left(W_{1}, W_{2} ; Y\right)-H\left(W_{1}, W_{2}\right)+H\left(U_{k}\right)+H\left(U_{j}\right), \quad k \in \mathcal{K}_{1}, j \in \mathcal{K}_{2}
\end{aligned}
$$

for some $\prod_{k=1}^{K} p\left(u_{k}\right)$ and $x_{k}\left(u_{k}\right)$ and non-zero vector $\boldsymbol{b} \in \mathbb{F}_{\mathbf{q}}^{2}$, where $\mathcal{K}_{j}=\left\{k \in[1: K]: a_{j k} \neq 0\right\}, j=1,2$ and $V=b_{1} W_{1} \oplus b_{2} W_{2}$.

Jointly Decoding Two Linear Combinations of K Codewords

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple $\left(R_{1}, \ldots, R_{K}\right)$ is achievable for computing two linear combinations if

$$
\begin{aligned}
& R_{k}<\min \left\{H\left(U_{k}\right)-H(V \mid Y), H\left(U_{k}\right)-H\left(W_{1}, W_{2} \mid Y, V\right)\right\}, \quad k \in \mathcal{K}_{1} \\
& R_{j}<I\left(W_{2} ; Y, W_{1}\right)-H\left(W_{2}\right)+H\left(U_{j}\right), \quad j \in \mathcal{K}_{2} \\
& R_{k}+R_{j}<I\left(W_{1}, W_{2} ; Y\right)-H\left(W_{1}, W_{2}\right)+H\left(U_{k}\right)+H\left(U_{j}\right), \quad k \in \mathcal{K}_{1}, j \in \mathcal{K}_{2} \\
& o r \\
& R_{k}<I\left(W_{1} ; Y, W_{2}\right)-H\left(W_{1}\right)+H\left(U_{k}\right), \quad k \in \mathcal{K}_{1} \\
& R_{j}<\min \left\{H\left(U_{j}\right)-H(V \mid Y), H\left(U_{j}\right)-H\left(W_{1}, W_{2} \mid Y, V\right)\right\}, \quad j \in \mathcal{K}_{2} \\
& R_{k}+R_{j}<I\left(W_{1}, W_{2} ; Y\right)-H\left(W_{1}, W_{2}\right)+H\left(U_{k}\right)+H\left(U_{j}\right), \quad k \in \mathcal{K}_{1}, j \in \mathcal{K}_{2}
\end{aligned}
$$

for some $\prod_{k=1}^{K} p\left(u_{k}\right)$ and $x_{k}\left(u_{k}\right)$ and non-zero vector $\boldsymbol{b} \in \mathbb{F}_{\mathbf{q}}^{2}$, where $\mathcal{K}_{j}=\left\{k \in[1: K]: a_{j k} \neq 0\right\}, j=1,2$ and $V=b_{1} W_{1} \oplus b_{2} W_{2}$.

- The auxiliary linear combination V plays a key role in classifying dependent competing pairs in the error analysis.

Multiple-Access via Nested Linear Codes

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable for the discrete memoryless multiple-access channel if

$$
\begin{aligned}
& \qquad \quad R_{1}<\max _{\mathbf{a} \neq \mathbf{0}} \min \left\{H\left(U_{1}\right)-H(W \mid Y), H\left(U_{1}\right)-H\left(U_{1}, U_{2} \mid Y, W\right)\right\}, \\
& \quad R_{2}<I\left(X_{2} ; Y \mid X_{1}\right), \\
& R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right), \\
& \quad R_{1}<I\left(X_{1} ; Y \mid X_{2}\right), \\
& R_{2}<\max _{\mathbf{a} \neq 0} \min \left\{H\left(U_{2}\right)-H(W \mid Y), H\left(U_{2}\right)-H\left(U_{1}, U_{2} \mid Y, W\right)\right\}, \\
& R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right) \\
& \text { for some } p\left(u_{1}\right) p\left(u_{2}\right) \text { and } x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right), \text { where } W=a_{1} U_{1} \oplus a_{2} U_{2} .
\end{aligned}
$$

Multiple-Access Rate Region

where $I_{1}=\max _{\mathbf{a} \neq \mathbf{0}} \min \left\{H\left(U_{1}\right)-H(W \mid Y), H\left(U_{1}\right)-H\left(U_{1}, U_{2} \mid Y, W\right)\right\}$

Multiple-Access Rate Region

where $I_{2}=\max _{\mathbf{a} \neq \mathbf{0}} \min \left\{H\left(U_{2}\right)-H(W \mid Y), H\left(U_{2}\right)-H\left(U_{1}, U_{2} \mid Y, W\right)\right\}$

Multiple-Access Rate Region

- Multiple-access rate region via nested linear codes:

$$
\mathscr{R}_{1} \cup \mathscr{R}_{2}
$$

- Even if the receiver is only interested in recovering one linear combination it can sometimes help to decode two!

MAC Capacity Region
"Two Help One"

- Even if the receiver is only interested in recovering one linear combination it can sometimes help to decode two!

Decode One Linear Combination
"Two Help One"

- Even if the receiver is only interested in recovering one linear combination it can sometimes help to decode two!

Multiple-Access via Nested Linear Codes

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

Concluding Remarks

- First steps towards bringing algebraic network information theory back into the realm of joint typicality.
- Joint decoding rate region for compute-and-forward that outperforms parallel and successive decoding.

