Towards an Algebraic Network Information Theory

Bobak Nazer (BU)

Joint work with Sung Hoon Lim (EPFL), Chen Feng (UBC), and Michael Gastpar (EPFL).

DIMACS Workshop on Network Coding: The Next 15 Years

December 17th, 2015

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Classical Approach:

• Generate codewords elementwise i.i.d.

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...
- State-of-the-art elegantly captured in the recent textbook of **El Gamal and Kim.**

- Generate codewords elementwise i.i.d.
- Powerful generalizations including superposition coding, dirty paper coding, block Markov coding, and many more...
- Rate regions described in terms of (single-letter) information measures optimized over pmfs.
- Many important successes: multiple-access channels, (degraded) broadcast channels, Slepian-Wolf compression, network coding, and many more...
- State-of-the-art elegantly captured in the recent textbook of **El Gamal and Kim.**
- Codes with algebraic structure are sought after to mimic the performance of random i.i.d. codes.

Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.
- Are these just a collection of intriguing examples or elements of a more general theory?

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks and have employed nested lattice codebooks.
- Are these just a collection of intriguing examples or elements of a more general theory?

This Talk: We build on previous work and propose a joint typicality approach to algebraic network information theory.

Goal: Send a linear combination of the messages to the receiver.

Goal: Send a linear combination of the messages to the receiver.

Goal: Send a linear combination of the messages to the receiver.

Goal: Send linear combinations of the messages to the receivers.

Goal: Send linear combinations of the messages to the receivers.

 Compute-and-forward can serve as a framework for communicating messages across a network (e.g., relaying, MIMO uplink/downlink, interference alignment).

Goal: Send linear combinations of the messages to the receivers.

- Compute-and-forward can serve as a framework for communicating messages across a network (e.g., relaying, MIMO uplink/downlink, interference alignment).
- Much of the recent work has focused on Gaussian networks.

The Usual Approach

The Usual Approach

• Symmetric Gaussian MAC.

- Symmetric Gaussian MAC.
- Equal power constraints: $\mathbb{E} \|\mathbf{x}_{\ell}\|^2 \leq nP.$

- Symmetric Gaussian MAC.
- Equal power constraints: $\mathbb{E} \|\mathbf{x}_{\ell}\|^2 \leq nP.$
- Use nested lattice codes.

- Symmetric Gaussian MAC.
- Equal power constraints: $\mathbb{E} \|\mathbf{x}_{\ell}\|^2 \leq nP.$
- Use nested lattice codes.

• Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11: Decoding is successful if the rates satisfy

$$R_k < \frac{1}{2}\log^+\left(\frac{1}{2} + P\right) \,.$$

- Symmetric Gaussian MAC.
- Equal power constraints: $\mathbb{E} \|\mathbf{x}_{\ell}\|^2 \leq nP.$
- Use nested lattice codes.

• Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11: Decoding is successful if the rates satisfy

$$R_k < \frac{1}{2}\log^+\left(\frac{1}{2} + P\right) \,.$$

• Cut-set upper bound is $\frac{1}{2}\log(1+P)$.

- Symmetric Gaussian MAC.
- Equal power constraints: $\mathbb{E} \|\mathbf{x}_{\ell}\|^2 \leq nP.$
- Use nested lattice codes.

• Wilson-Narayanan-Pfister-Sprintson '10, Nazer-Gastpar '11: Decoding is successful if the rates satisfy

$$R_k < \frac{1}{2}\log^+\left(\frac{1}{2} + P\right) \,.$$

- Cut-set upper bound is $\frac{1}{2}\log(1+P)$.
- What about the "1+"? Still open! (Ice wine problem.)

• How about general Gaussian MACs?

- How about general Gaussian MACs?

 $m_{1} \rightarrow \overbrace{\mathcal{E}_{1}}^{X_{1}^{n}} \xrightarrow{Z^{n}} \xrightarrow{T^{n}} p_{1} \rightarrow \widehat{t}$ $\vdots \qquad \vdots \qquad \vdots \qquad \downarrow \qquad \nu(t) = \bigoplus_{k=1}^{K} \left[\mathbf{0} \ \boldsymbol{\nu}(m_{k})\right]$

- How about general Gaussian MACs?

• Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.

- How about general Gaussian MACs?

- Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Decoding is successful if the rates satisfy

$$R_{\ell} < \frac{1}{2} \log^+ \left(\frac{P_{\ell}}{\sum_{i=1}^L P_i} + P_{\ell} \right) \,.$$

- How about general Gaussian MACs?

- Nam-Chung-Lee '11: At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Decoding is successful if the rates satisfy

$$R_{\ell} < \frac{1}{2} \log^+ \left(\frac{P_{\ell}}{\sum_{i=1}^L P_i} + P_{\ell} \right) \,.$$

• Nazer-Cadambe-Ntranos-Caire '15: Expanded compute-and-forward framework to link unequal power setting to finite fields.

Point-to-Point Channels

$$M \to \fbox{Encoder} \xrightarrow{X^n} p_{Y|X} \xrightarrow{Y^n} \r{Decoder} \to \hat{M}$$

- Messages: $m \in [2^{nR}] \triangleq \{0, \dots, 2^{nR} 1\}$
- Encoder: a mapping $x^n(m) \in \mathcal{X}^n$ for each $m \in [2^{nR}]$
- Decoder: a mapping $\hat{m}(y^n) \in [2^{nR}]$ for each $y^n \in \mathcal{Y}^n$
Point-to-Point Channels

$$M \to \fbox{Encoder} \xrightarrow{X^n} p_{Y|X} \xrightarrow{Y^n} \r{Decoder} \to \hat{M}$$

- Messages: $m \in [2^{nR}] \triangleq \{0, \dots, 2^{nR} 1\}$
- Encoder: a mapping $x^n(m) \in \mathcal{X}^n$ for each $m \in [2^{nR}]$
- Decoder: a mapping $\hat{m}(y^n) \in [2^{nR}]$ for each $y^n \in \mathcal{Y}^n$

Theorem (Shannon '48)

$$C = \max_{p_X(x)} I(X;Y)$$

Point-to-Point Channels

$$M \to \fbox{Encoder} \xrightarrow{X^n} p_{Y|X} \xrightarrow{Y^n} \r{Decoder} \to \hat{M}$$

- Messages: $m \in [2^{nR}] \triangleq \{0, \dots, 2^{nR} 1\}$
- Encoder: a mapping $x^n(m) \in \mathcal{X}^n$ for each $m \in [2^{nR}]$
- Decoder: a mapping $\hat{m}(y^n) \in [2^{nR}]$ for each $y^n \in \mathcal{Y}^n$

Theorem (Shannon '48)

$$C = \max_{p_X(x)} I(X;Y)$$

• Proof relies on random i.i.d. codebooks combined with joint typicality decoding.

Random i.i.d. Codebooks

Random i.i.d. Codes

- Codewords are independent of one another.
- Can directly target an input distribution $p_X(x)$.

Code Construction:

• Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(\mathbf{q})$.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(\mathbf{q})$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_q^{\kappa \times n}$ elementwise i.i.d. $\mathrm{Unif}(\mathbb{F}_q)$. Let G be a realization.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(q)$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_q^{\kappa \times n}$ elementwise i.i.d. $\mathrm{Unif}(\mathbb{F}_q)$. Let G be a realization.
- Draw a random shift (or "dither") Dⁿ elementwise i.i.d. Unif(F_q). Let dⁿ be a realization.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(q)$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_q^{\kappa \times n}$ elementwise i.i.d. $\mathrm{Unif}(\mathbb{F}_q)$. Let G be a realization.
- Draw a random shift (or "dither") Dⁿ elementwise i.i.d. Unif(F_q). Let dⁿ be a realization.
- Take q-ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{q}^{\kappa}$.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(q)$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_q^{\kappa \times n}$ elementwise i.i.d. $\mathrm{Unif}(\mathbb{F}_q)$. Let G be a realization.
- Draw a random shift (or "dither") Dⁿ elementwise i.i.d. Unif(F_q). Let dⁿ be a realization.
- Take q-ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{q}^{\kappa}$.
- Linear codeword for message m is $u^n(m) = \mathbf{\nu}(m) \mathbf{G} \oplus d^n$.

- Pick a finite field \mathbb{F}_q and a symbol mapping $x : \mathbb{F}_q \to \mathcal{X}$.
- Set $\kappa = nR/\log(q)$.
- Draw a random generator matrix $\mathbf{G} \in \mathbb{F}_q^{\kappa imes n}$ elementwise i.i.d. $\mathrm{Unif}(\mathbb{F}_q)$. Let G be a realization.
- Draw a random shift (or "dither") Dⁿ elementwise i.i.d. Unif(F_q). Let dⁿ be a realization.
- Take q-ary expansion of message m into the vector $\boldsymbol{\nu}(m) \in \mathbb{F}_{q}^{\kappa}$.
- Linear codeword for message m is $u^n(m) = \mathbf{\nu}(m) \mathbf{G} \oplus d^n$.
- Channel input at time *i* is $x_i(m) = x(u_i(m))$.

Random i.i.d. Codebooks

Random Linear Codes

- Codewords are pairwise independent of one another.
- Codewords are uniformly distributed over \mathbb{F}_q^n .

• Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, **Ahlswede '71**.

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, **Ahlswede '71**.
- Gallager '68: Pick 𝔽_q with q ≫ X and choose symbol mapping x(u) to reach c.a.i.d. from Unif(𝔽_q). This can attain the capacity.

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, **Ahlswede '71**.
- Gallager '68: Pick 𝔽_q with q ≫ X and choose symbol mapping x(u) to reach c.a.i.d. from Unif(𝔽_q). This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, **Ahlswede '71**.
- Gallager '68: Pick 𝔽_q with q ≫ X and choose symbol mapping x(u) to reach c.a.i.d. from Unif(𝔽_q). This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.
- Padakandla-Pradhan '13: It is possible to shape the input distribution using nested linear codes.

- Well known that a direct application of linear coding is not sufficient to reach the point-to-point capacity, **Ahlswede '71**.
- Gallager '68: Pick 𝔽_q with q ≫ X and choose symbol mapping x(u) to reach c.a.i.d. from Unif(𝔽_q). This can attain the capacity.
- This will not work for us. Roughly speaking, if each encoder has a different input distribution, the symbol mappings may be quite different, which will disrupt the linear structure of the codebook.
- Padakandla-Pradhan '13: It is possible to shape the input distribution using nested linear codes.
- Basic idea: Generate many codewords to represent one message. Search in this "bin" to find a codeword with the desired type, i.e., multicoding.

Code Construction:

• Messages $m \in [2^{nR}]$ and auxiliary indices $l \in [2^{n\hat{R}}]$.

- Messages $m \in [2^{nR}]$ and auxiliary indices $l \in [2^{n\hat{R}}]$.
- Set $\kappa = n(R + \hat{R}) / \log(\mathbf{q})$.

- Messages $m \in [2^{nR}]$ and auxiliary indices $l \in [2^{n\hat{R}}]$.
- Set $\kappa = n(R + \hat{R})/\log(\mathbf{q}).$
- Pick generator matrix G and dither d^n as before.

- Messages $m \in [2^{nR}]$ and auxiliary indices $l \in [2^{n\hat{R}}]$.
- Set $\kappa = n(R + \hat{R})/\log(\mathbf{q}).$
- Pick generator matrix G and dither d^n as before.
- Take q-ary expansions $\left[\boldsymbol{\nu}(m) \; \boldsymbol{\nu}(l) \right] \in \mathbb{F}_{\mathsf{q}}^{\kappa}$.

- Messages $m \in [2^{nR}]$ and auxiliary indices $l \in [2^{n\hat{R}}]$.
- Set $\kappa = n(R + \hat{R})/\log(\mathbf{q}).$
- Pick generator matrix G and dither d^n as before.
- Take q-ary expansions $[\boldsymbol{\nu}(m) \ \boldsymbol{\nu}(l)] \in \mathbb{F}_{q}^{\kappa}$.
- Linear codewords: $u^n(m,l) = [\boldsymbol{\nu}(m) \ \boldsymbol{\nu}(l)] \mathsf{G} \oplus d^n$.

Encoding:

• Fix p(u) and x(u).

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$
- Succeeds w.h.p. if $\hat{R} > D(p_U || p_q)$ (where p_q is uniform over \mathbb{F}_q).

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$
- Succeeds w.h.p. if $\hat{R} > D(p_U || p_q)$ (where p_q is uniform over \mathbb{F}_q).
- Transmit $x_i = x(u_i(m, l)).$

Encoding:

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$
- Succeeds w.h.p. if $\hat{R} > D(p_U || p_q)$ (where p_q is uniform over \mathbb{F}_q).
- Transmit $x_i = x(u_i(m, l)).$

Decoding:

Encoding:

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$
- Succeeds w.h.p. if $\hat{R} > D(p_U || p_q)$ (where p_q is uniform over \mathbb{F}_q).
- Transmit $x_i = x(u_i(m, l)).$

Decoding:

• Joint Typicality Decoding: Find the unique index \hat{m} such that $(u^n(\hat{m}, \hat{l}), y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)$ for some index \hat{l} .

Encoding:

- Fix p(u) and x(u).
- Multicoding: For each m, find an index l such that $u^n(m,l)\in \mathcal{T}^{(n)}_{\epsilon'}(U)$
- Succeeds w.h.p. if $\hat{R} > D(p_U || p_q)$ (where p_q is uniform over \mathbb{F}_q).
- Transmit $x_i = x(u_i(m, l)).$

Decoding:

- Joint Typicality Decoding: Find the unique index \hat{m} such that $(u^n(\hat{m}, \hat{l}), y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)$ for some index \hat{l} .
- Succeeds w.h.p. if $R + \hat{R} < I(U;Y) + D(p_U || p_q)$

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$R < \max_{p(u), x(u)} I(U; Y)$$

is achievable. This is equal to the capacity if $q \ge |\mathcal{X}|$.

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$R < \max_{p(u), x(u)} I(U; Y)$$

is achievable. This is equal to the capacity if $q \ge |\mathcal{X}|$.

• This is the basic coding framework that we will use for each transmitter.

Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

$$R < \max_{p(u), x(u)} I(U; Y)$$

is achievable. This is equal to the capacity if $q \ge |\mathcal{X}|$.

- This is the basic coding framework that we will use for each transmitter.
- Next, let's examine a two-transmitter, one-receiver "compute-and-forward" network.

Nested Linear Coding Architecture

Code Construction:

• Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.

Nested Linear Coding Architecture

- Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.
- Set $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}) / \log(q)$.

Code Construction:

- Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.
- Set $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}) / \log(q)$.
- Pick generator matrix G and dithers d_1^n , d_2^n as before.

Code Construction:

- Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.
- Set $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}) / \log(q)$.
- Pick generator matrix G and dithers d_1^n , d_2^n as before.
- Take q-ary expansions $\begin{bmatrix} \boldsymbol{\nu}(m_1) & \boldsymbol{\nu}(l_1) \end{bmatrix} \in \mathbb{F}_q^{\kappa}$ $\begin{bmatrix} \boldsymbol{\nu}(m_2) & \boldsymbol{\nu}(l_2) & \mathbf{0} \end{bmatrix} \in \mathbb{F}_q^{\kappa}$ Zero-padding

Code Construction:

- Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.
- Set $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}) / \log(q)$.
- Pick generator matrix G and dithers d_1^n, d_2^n as before.
- Take q-ary expansions $[\boldsymbol{\eta}(m_1, l_1)] \in \mathbb{F}_q^{\kappa}$ $[\boldsymbol{\eta}(m_2, l_2)] \in \mathbb{F}_q^{\kappa}$

Code Construction:

• Messages $m_k \in [2^{nR_k}]$ and auxiliary indices $l_k \in [2^{n\hat{R}_k}]$, k = 1, 2.

• Set
$$\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}) / \log(q)$$
.

• Pick generator matrix G and dithers d_1^n , d_2^n as before.

• Take q-ary expansions
$$\left[\boldsymbol{\eta}(m_1, l_1) \right] \in \mathbb{F}_{\mathsf{q}}^{\kappa}$$

 $\left[\boldsymbol{\eta}(m_2, l_2) \right] \in \mathbb{F}_{\mathsf{q}}^{\kappa}$

• Linear codewords: $u_1^n(m_1, l_1) = \boldsymbol{\eta}(m_1, l_1) \mathsf{G} \oplus d_1^n$ $u_2^n(m_2, l_2) = \boldsymbol{\eta}(m_2, l_2) \mathsf{G} \oplus d_2^n$

Encoding:

• Fix $p(u_1)$, $p(u_2)$, $x_1(u_1)$, and $x_2(u_2)$.

- Fix $p(u_1)$, $p(u_2)$, $x_1(u_1)$, and $x_2(u_2)$.
- Multicoding: For each m_k , find an index l_k such that $u_k^n(m_k, l_k) \in \mathcal{T}_{\epsilon'}^{(n)}(U_k)$.

- Fix $p(u_1)$, $p(u_2)$, $x_1(u_1)$, and $x_2(u_2)$.
- Multicoding: For each m_k , find an index l_k such that $u_k^n(m_k, l_k) \in \mathcal{T}_{\epsilon'}^{(n)}(U_k)$.
- Succeeds w.h.p. if $\hat{R}_k > D(p_{U_k} || p_q)$.

- Fix $p(u_1)$, $p(u_2)$, $x_1(u_1)$, and $x_2(u_2)$.
- Multicoding: For each m_k , find an index l_k such that $u_k^n(m_k, l_k) \in \mathcal{T}_{\epsilon'}^{(n)}(U_k)$.
- Succeeds w.h.p. if $\hat{R}_k > D(p_{U_k} \| p_q)$.
- Transmit $x_{ki} = x_k (u_{ki}(m_k, l_k)).$

- Fix $p(u_1)$, $p(u_2)$, $x_1(u_1)$, and $x_2(u_2)$.
- Multicoding: For each m_k , find an index l_k such that $u_k^n(m_k, l_k) \in \mathcal{T}_{\epsilon'}^{(n)}(U_k)$.
- Succeeds w.h.p. if $\hat{R}_k > D(p_{U_k} \| p_q)$.
- Transmit $x_{ki} = x_k (u_{ki}(m_k, l_k)).$

Computation Problem:

Computation Problem:

• Consider the coefficients $\mathbf{a} \in \mathbb{F}_{q}^{2}$, $\mathbf{a} = [a_{1}, \ a_{2}]$

Computation Problem:

- Consider the coefficients $\mathbf{a} \in \mathbb{F}^2_{\mathsf{q}}$, $\mathbf{a} = [a_1, \ a_2]$
- For $m_k \in [2^{nR_k}]$, $l_k \in [2^{n\hat{R}_k}]$, the linear combination of codewords with coefficient vector **a** is

$$\begin{aligned} a_1 u_1^n(m_1, l_1) \oplus a_2 u_2^n(m_2, l_2) \\ &= \left[a_1 \boldsymbol{\eta}(m_1, l_1) \oplus a_2 \boldsymbol{\eta}(m_2, l_2) \right] \mathsf{G} \oplus a_1 d_1^n \oplus a_2 d_2^n \\ &= \boldsymbol{\nu}(t) \mathsf{G} \oplus d_w^n \\ &= w^n(t), \quad t \in \left[2^{n \max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}} \right] \end{aligned}$$

Computation Problem:

• Let M_k be the chosen message and L_k the chosen index from the multicoding step.

Computation Problem:

- Let M_k be the chosen message and L_k the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

 $W^n(T) = a_1 U_1^n(M_1, L_1) \oplus a_2 U_2^n(M_2, L_2)$

Computation Problem:

- Let M_k be the chosen message and L_k the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

 $W^{n}(T) = a_{1}U_{1}^{n}(M_{1}, L_{1}) \oplus a_{2}U_{2}^{n}(M_{2}, L_{2})$

- Decoder: $\hat{t}(y^n) \in [2^{n \max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}}]$, $y^n \in \mathcal{Y}^n$
- Probability of Error: $\mathsf{P}_{\epsilon}^{(n)} = \mathsf{P}\{T \neq \hat{T}\}$

Computation Problem:

- Let M_k be the chosen message and L_k the chosen index from the multicoding step.
- Decoder wants a linear combination of the codewords:

 $W^n(T) = a_1 U_1^n(M_1, L_1) \oplus a_2 U_2^n(M_2, L_2)$

- Decoder: $\hat{t}(y^n) \in [2^{n \max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}}]$, $y^n \in \mathcal{Y}^n$
- Probability of Error: $\mathsf{P}_{\epsilon}^{(n)} = \mathsf{P}\{T \neq \hat{T}\}$
- A rate pair is achievable if there exists a sequence of codes such that $\mathsf{P}_{\epsilon}^{(n)} \to 0$ as $n \to \infty$.

Decoding:

• Joint Typicality Decoding: Find an index $t \in [2^{n \max(R_1 + \hat{R}_1, R_2 + \hat{R}_2)}]$ such that $(w^n(t), y^n) \in \mathcal{T}_{\epsilon}^{(n)}$.

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair (R_1, R_2) is achievable if

$$\begin{split} R_1 &< I(W;Y) - I(W;U_2), \\ R_2 &< I(W;Y) - I(W;U_1), \end{split}$$

for some $p(u_1)p(u_2)$ and functions $x_1(u_1)$, $x_2(u_2)$, where $U_k = \mathbb{F}_q$, k = 1, 2, and $W = a_1U_1 \oplus a_2U_2$.

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair (R_1, R_2) is achievable if

$$\begin{split} R_1 &< I(W;Y) - I(W;U_2), \\ R_2 &< I(W;Y) - I(W;U_1), \end{split}$$

for some $p(u_1)p(u_2)$ and functions $x_1(u_1)$, $x_2(u_2)$, where $U_k = \mathbb{F}_q$, k = 1, 2, and $W = a_1U_1 \oplus a_2U_2$.

• Padakandla-Pradhan '13: Special case where $R_1 = R_2$.

• WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$

• WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$

• Union bound:
$$\mathsf{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathsf{P}\left\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M}\right\}.$$

- WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$
- Union bound: $\mathsf{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathsf{P}\big\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M}\big\}.$
- Notice that the L_k depend on the codebook so Yⁿ and Wⁿ(t) are not independent.

• WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$

• Union bound:
$$\mathsf{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathsf{P}\left\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M}\right\}.$$

- Notice that the L_k depend on the codebook so Y^n and $W^n(t)$ are not independent.
- To get around this issue, we analyze

$$\mathsf{P}(\mathcal{E}) = \sum_{t \neq 0} \mathsf{P}\big\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}, U_1^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)}, U_2^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M} \big\}$$

• WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$

• Union bound:
$$\mathsf{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathsf{P}\left\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M}\right\}.$$

- Notice that the L_k depend on the codebook so Y^n and $W^n(t)$ are not independent.
- To get around this issue, we analyze

$$\mathsf{P}(\mathcal{E}) = \sum_{t \neq 0} \mathsf{P}\big\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}, U_1^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)}, U_2^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M} \big\}$$

• Conditioned on $\mathcal{M}, Y^n \to (U_1^n(0,0), U_2^n(0,0)) \to W^n(t)$

• WLOG assume $\mathcal{M} = \{M_1 = 0, M_2 = 0, L_1 = 0, L_2 = 0\}.$

• Union bound:
$$\mathsf{P}_{\epsilon}^{(n)} \leq \sum_{t \neq 0} \mathsf{P}\left\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M}\right\}.$$

- Notice that the L_k depend on the codebook so Y^n and $W^n(t)$ are not independent.
- To get around this issue, we analyze

$$\mathsf{P}(\mathcal{E}) = \sum_{t \neq 0} \mathsf{P}\big\{(W^n(t), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}, U_1^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)}, U_2^n(0, 0) \in \mathcal{T}_{\epsilon}^{(n)} | \mathcal{M} \big\}$$

- Conditioned on $\mathcal{M}, Y^n \to (U_1^n(0,0), U_2^n(0,0)) \to W^n(t)$
- $\mathsf{P}(\mathcal{E})$ tends to zero as $n \to \infty$ if

$$\begin{split} R_k + \hat{R}_k + \hat{R}_1 + \hat{R}_2 \\ < I(W;Y) + D(p_W || p_{\mathsf{q}}) + D(p_{U_1} || p_{\mathsf{q}}) + D(p_{U_2} || p_{\mathsf{q}}) \end{split}$$

• Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$

- Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$
- Want to recover $a_1X_1^n + a_2X_2^n$ for some integers a_1, a_2 .

- Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$
- Want to recover $a_1X_1^n + a_2X_2^n$ for some integers a_1, a_2 .
- Gaussian noise: $Z \sim \mathcal{N}(0, 1)$

- Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$
- Want to recover $a_1X_1^n + a_2X_2^n$ for some integers a_1, a_2 .
- Gaussian noise: $Z \sim \mathcal{N}(0, 1)$
- Usual power constraint: $\mathsf{E}[X_k^2] \leq P$

- Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$
- Want to recover $a_1X_1^n + a_2X_2^n$ for some integers a_1, a_2 .
- Gaussian noise: $Z \sim \mathcal{N}(0, 1)$
- Usual power constraint: $\mathsf{E}[X_k^2] \leq P$
- Via Gaussian quantization arguments, we can recover the following theorem.

- Consider a Gaussian MAC with real-valued channel output $Y = h_1 X_1 + h_2 X_2 + Z$
- Want to recover $a_1X_1^n + a_2X_2^n$ for some integers a_1, a_2 .
- Gaussian noise: $Z \sim \mathcal{N}(0, 1)$
- Usual power constraint: $\mathsf{E}[X_k^2] \le P$
- Via Gaussian quantization arguments, we can recover the following theorem.

Theorem (Nazer-Gastpar '11)

For any channel vector \mathbf{h} and integer coefficient vector \mathbf{a} , any rate tuple satisfying $R_k < R_{comp}(\mathbf{h}, \mathbf{a})$ for k s.t. $a_k \neq 0$ is achievable where

$$R_{comp}(\mathbf{h}, \mathbf{a}) = \frac{1}{2} \log^{+} \left(\frac{P}{\mathbf{a}^{\mathsf{T}} (P^{-1}\mathbf{I} + \mathbf{h}\mathbf{h}^{\mathsf{T}})^{-1} \mathbf{a}} \right)$$

Beyond One Linear Combination

• In some scenarios, it is of interest to decode two or more linear combinations at each receiver.

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, **Ordentlich-Erez-Nazer** '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, **Ordentlich-Erez-Nazer** '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, **Ordentlich-Erez-Nazer** '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?
- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, **Ordentlich-Erez-Nazer** '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?
- Ordentlich-Erez '13 derived bounds for lattice-based codes.

- In some scenarios, it is of interest to decode two or more linear combinations at each receiver.
- For example, **Ordentlich-Erez-Nazer** '14 approximates the sum capacity of the symmetric Gaussian interference channel via decoding two linear combinations.
- Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for two or more linear combinations via successive cancellation.
- What about jointly decoding the linear combinations?
- Ordentlich-Erez '13 derived bounds for lattice-based codes.
- This talk: We can analyze this via joint typicality decoding to get an achievable rate region.

 At node k ∈ [1 : K], the message M_k is encoded using the nested linear coding architecture.

- At node $k \in [1:K]$, the message M_k is encoded using the nested linear coding architecture.
- Let L_k be the chosen index from the multicoding step.

- At node $k \in [1:K]$, the message M_k is encoded using the nested linear coding architecture.
- Let L_k be the chosen index from the multicoding step.
- The objective of the receiver is to compute two linear combinations of the codewords,

$$W_1^n(T_1) = \bigoplus_{k=1}^K a_{1k} u_k^n(M_k, L_k)$$
$$W_2^n(T_2) = \bigoplus_{k=1}^K a_{2k} u_k^n(M_k, L_k) ,$$

with vanishing probability of error.

- At node $k \in [1:K]$, the message M_k is encoded using the nested linear coding architecture.
- Let L_k be the chosen index from the multicoding step.
- The objective of the receiver is to compute two linear combinations of the codewords,

$$W_1^n(T_1) = \bigoplus_{k=1}^K a_{1k} u_k^n(M_k, L_k)$$
$$W_2^n(T_2) = \bigoplus_{k=1}^K a_{2k} u_k^n(M_k, L_k) ,$$

with vanishing probability of error.

• Key Technical Issue: Random linear codewords are pairwise independent, but not 4-wise independent!

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple (R_1,\ldots,R_K) is achievable for computing two linear combinations if

 $R_k < \min\{H(U_k) - H(V|Y), H(U_k) - H(W_1, W_2|Y, V)\}, k \in \mathcal{K}_1$ $R_i < I(W_2; Y, W_1) - H(W_2) + H(U_i), \quad i \in \mathcal{K}_2,$ $R_k + R_j < I(W_1, W_2; Y) - H(W_1, W_2) + H(U_k) + H(U_j), \quad k \in \mathcal{K}_1, j \in \mathcal{K}_2$ or $R_k < I(W_1; Y, W_2) - H(W_1) + H(U_k), \ k \in \mathcal{K}_1,$ $R_i < \min\{H(U_i) - H(V|Y), H(U_i) - H(W_1, W_2|Y, V)\}, j \in \mathcal{K}_2,$ $R_k + R_j < I(W_1, W_2; Y) - H(W_1, W_2) + H(U_k) + H(U_j), \ k \in \mathcal{K}_1, j \in \mathcal{K}_2$ for some $\prod_{k=1}^{K} p(u_k)$ and $x_k(u_k)$ and non-zero vector $\boldsymbol{b} \in \mathbb{F}^2_{\mathfrak{a}}$, where $\mathcal{K}_{i} = \{k \in [1:K] : a_{ik} \neq 0\}, j = 1, 2$ and $V = b_1 W_1 \oplus b_2 W_2$.

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple (R_1,\ldots,R_K) is achievable for computing two linear combinations if

 $R_k < \min\{H(U_k) - H(V|Y), H(U_k) - H(W_1, W_2|Y, V)\}, k \in \mathcal{K}_1$ $R_i < I(W_2; Y, W_1) - H(W_2) + H(U_i), \quad i \in \mathcal{K}_2,$ $R_k + R_j < I(W_1, W_2; Y) - H(W_1, W_2) + H(U_k) + H(U_j), \ k \in \mathcal{K}_1, j \in \mathcal{K}_2$ or $R_k < I(W_1; Y, W_2) - H(W_1) + H(U_k), \ k \in \mathcal{K}_1,$ $R_i < \min\{H(U_i) - H(V|Y), H(U_i) - H(W_1, W_2|Y, V)\}, j \in \mathcal{K}_2,$ $R_k + R_j < I(W_1, W_2; Y) - H(W_1, W_2) + H(U_k) + H(U_j), \ k \in \mathcal{K}_1, j \in \mathcal{K}_2$ for some $\prod_{k=1}^{K} p(u_k)$ and $x_k(u_k)$ and non-zero vector $\boldsymbol{b} \in \mathbb{F}_q^2$, where $\mathcal{K}_{i} = \{k \in [1:K] : a_{ik} \neq 0\}, j = 1, 2$

- and $V = b_1 W_1 \oplus b_2 W_2$.
- The auxiliary linear combination V plays a key role in classifying dependent competing pairs in the error analysis.

Multiple-Access via Nested Linear Codes

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair $\left(R_{1},R_{2}\right)$ is achievable for the discrete memoryless multiple-access channel if

$$\begin{split} R_1 &< \max_{\mathbf{a} \neq \mathbf{0}} \min\{H(U_1) - H(W|Y), \ H(U_1) - H(U_1, U_2|Y, W)\}, \\ R_2 &< I(X_2; Y|X_1), \\ R_1 + R_2 &< I(X_1, X_2; Y), \\ & or \\ R_1 &< I(X_1; Y|X_2), \\ R_2 &< \max_{\mathbf{a} \neq \mathbf{0}} \min\{H(U_2) - H(W|Y), \ H(U_2) - H(U_1, U_2|Y, W)\}, \\ R_1 + R_2 &< I(X_1, X_2; Y) \end{split}$$

for some $p(u_1)p(u_2)$ and $x_1(u_1)$, $x_2(u_2)$, where $W = a_1U_1 \oplus a_2U_2$.

Multiple-Access Rate Region

Multiple-Access Rate Region

Multiple-Access Rate Region

• Multiple-access rate region via nested linear codes:

 $\mathcal{R}_1 \cup \mathcal{R}_2$

MAC Capacity Region

Decode One Linear Combination

Multiple-Access via Nested Linear Codes

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

Case Study: Two-Sender, Two-Receiver Network

- First steps towards bringing algebraic network information theory back into the realm of joint typicality.
- Joint decoding rate region for compute-and-forward that outperforms parallel and successive decoding.