Coded MapReduce

Mohammad Ali Maddah-Ali

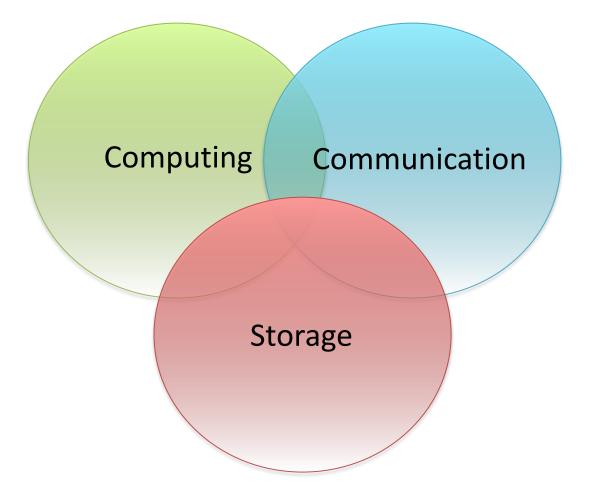
Bell Labs, Alcatel-Lucent

joint work with

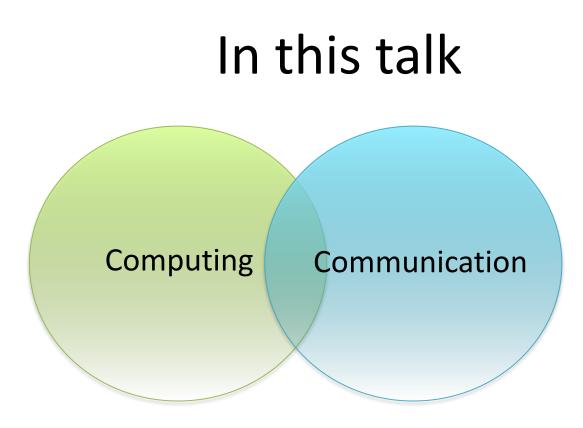
Sonze Li (USC) and Salman Avestimehr (USC)

DIMACS Dec. 2015

Infrastructure for big data



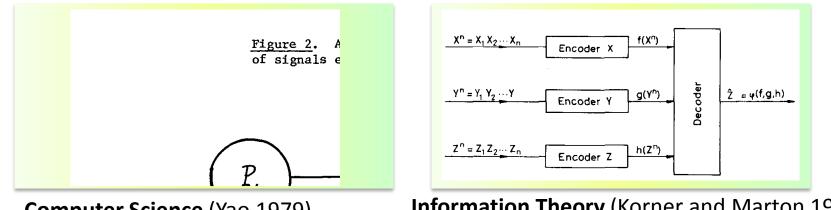
The interaction among major components is the limiting barrier!



Fundamental tradeoff between Computing and Communication

Formulation

Minimum communication for a specific **computation task**?



Computer Science (Yao 1979)

Information Theory (Korner and Marton 1979)

Shortcomings:

- Problem oriented
- Does not scale

Need a framework that is

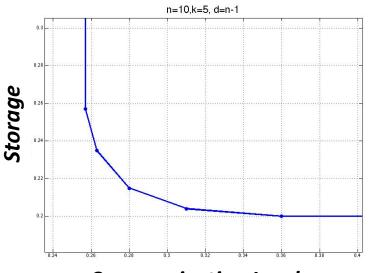
- General
- Scalable

Challenge: right formulation

What does data companies are using?

Storage

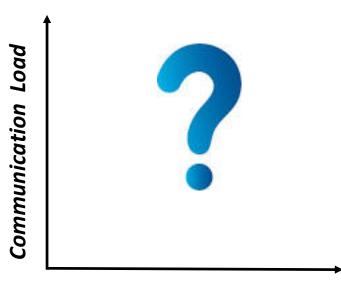
Hadoop Distributed File Systems (HDFS)



Communication Load

Refer to Yesterdays' Talks:

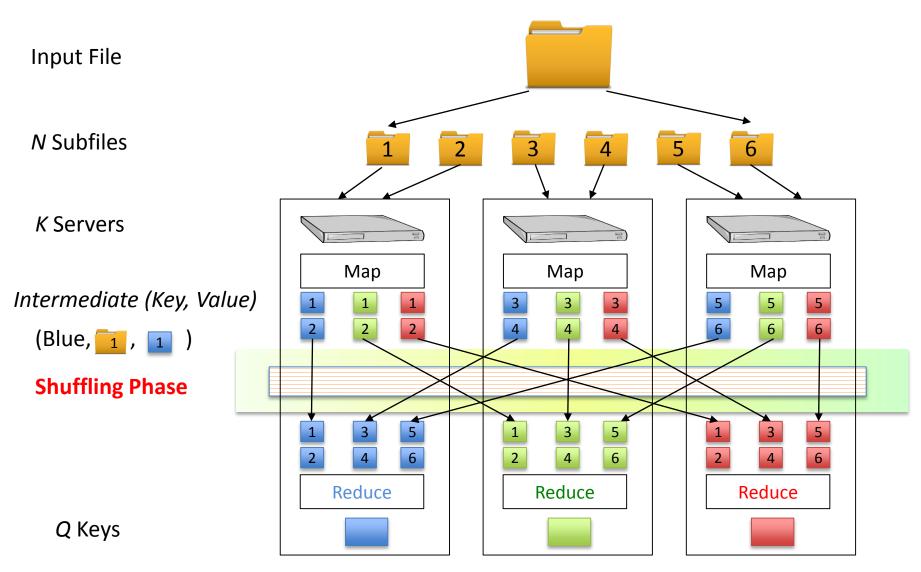
- Alexander Barg
- Alexander Dimakis



Computation Load

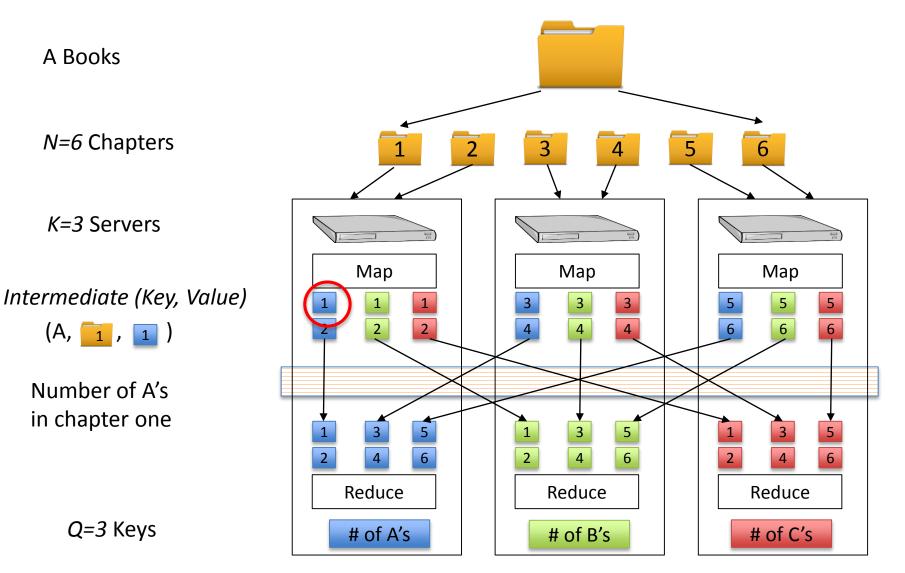
MapReduce: A General Framework

N Subfiles, K Servers, Q Keys



Example: Word Counting

N Subfiles, K Servers, Q Keys



MapReduce: A General Framework

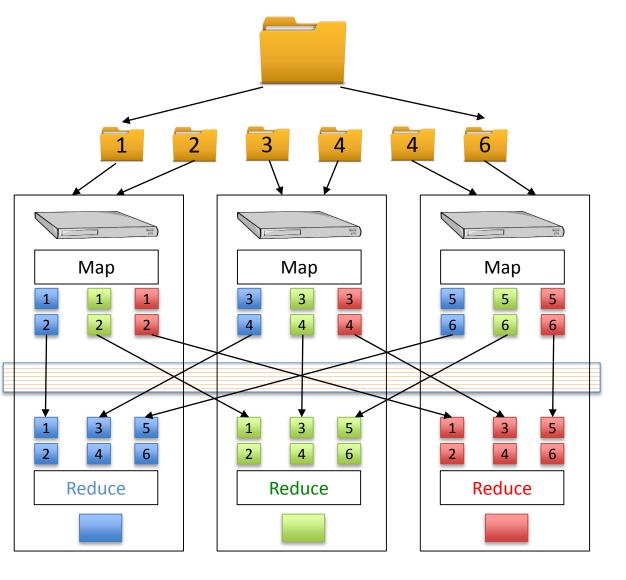
N Subfiles, K Servers, Q Keys

General Framework

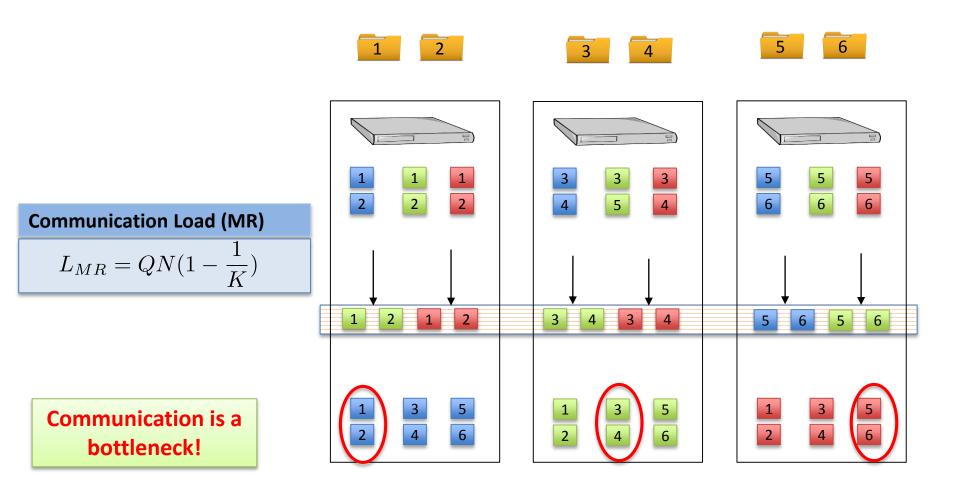
- Matrix Multiplication
- Distributed
 Optimization
- Page Rank

. . . .

Active Research Area: How to fit different jobs into this framework.

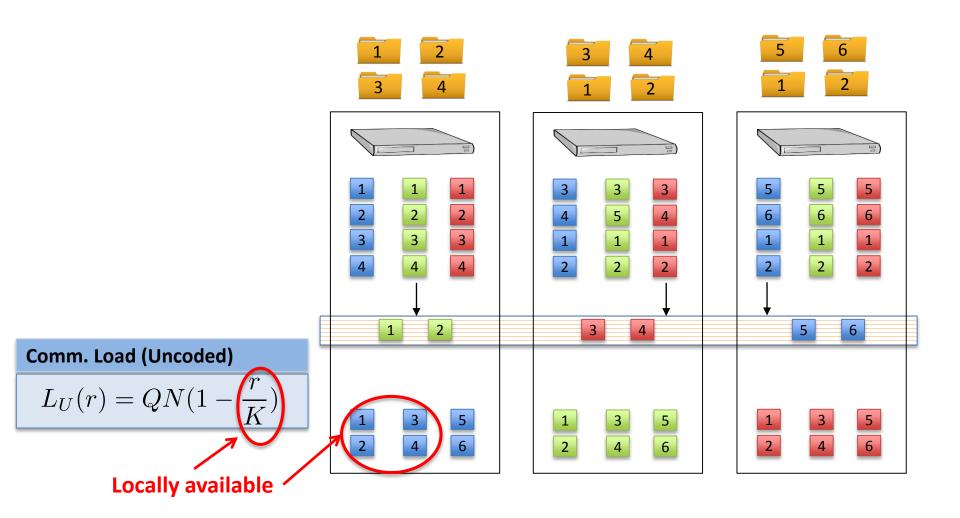


N=6 Subfiles, K=3 Servers, Q=3 Keys

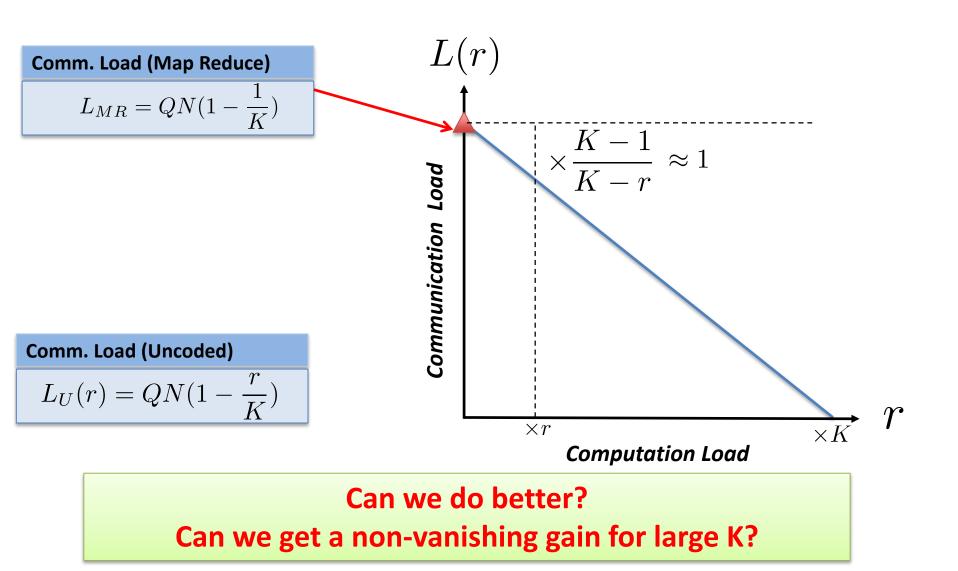


Can we reduce communication load at the cost of computation?

N Subfiles, K Servers, Q Keys, Comp. Load r

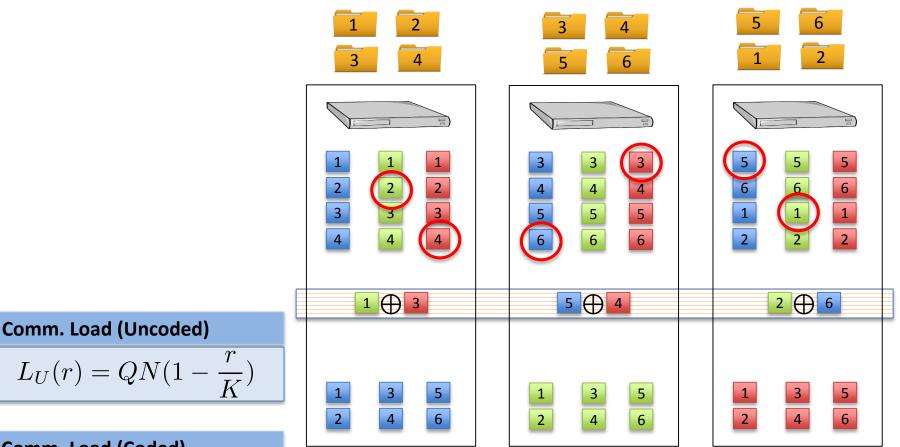


N Subfiles, K Servers, Q Keys, Comp. Load r



Coded MapReduce

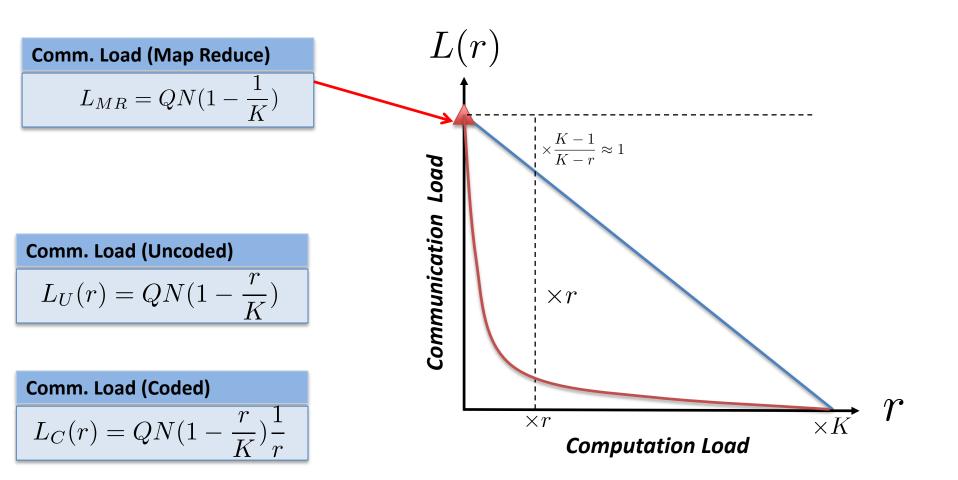
N Subfiles, K Servers, Q Keys, Comp. Load r



Comm. Load (Coded) $L_C(r) = QN(1 - \frac{r}{K})\frac{1}{r}$

Each Coded (key,value) pairs are useful for two servers

N Subfiles, K Servers, Q Keys, Comp. Load r



Communication Load x Computation Load ~ constant

Proposed Scheme

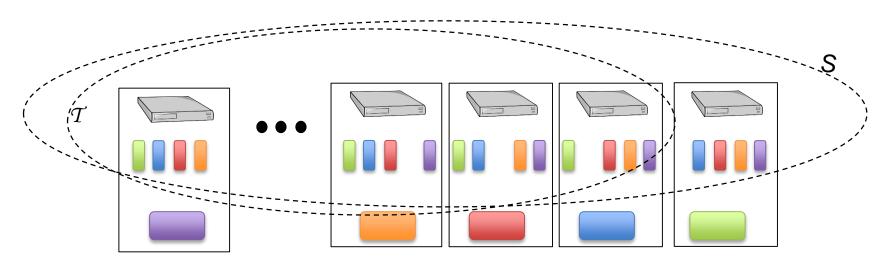
N Subfiles, K Servers, Q Keys, Comp. Load r

Objective: Each server can coded intermediate (Key, Value) pairs that are

useful for r other servers

Need to assign the sub-files such that:

- for every subset *S* of *r*+1 servers,
- and for every subset T of S with r servers,
- Servers in T share an intermediate (Key, Value) pairs useful for server $S \setminus T$



Proposed Scheme

N Subfiles, K Servers, Q Keys, Comp. Load r

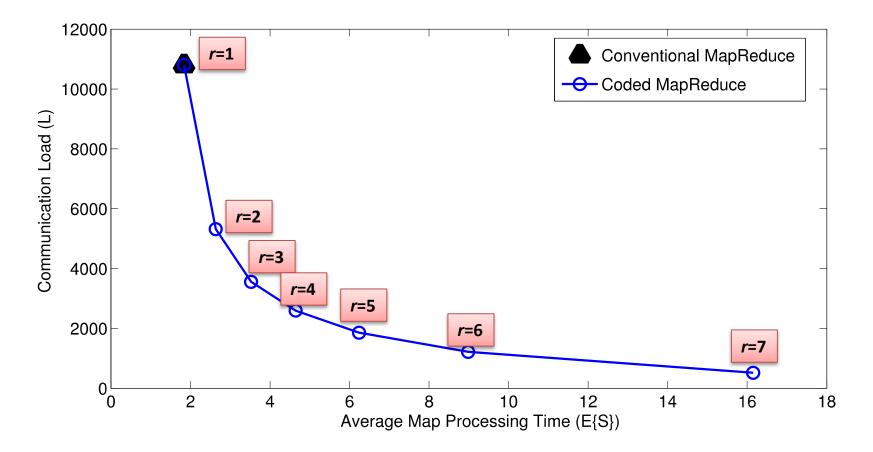
-N sub-files: $W_1, W_2, ..., W_N$

- Split the set of subfiles to $\binom{N}{r}$ batch of subfiles.

- Each subset of size r of the servers takes a unique batch of subfiles.

Coded MapReduce-Delay Profile

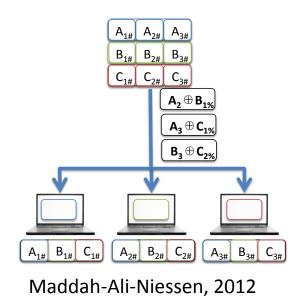
N=1200 Subfiles, K=10 Servers, Q=10 Keys

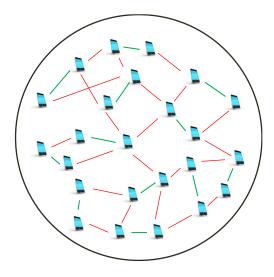


As soon as *r* copes of a mapping is done, kills that mapping on other servers.

Map time duration: Exponential random variable

Connection with Coded Caching





Ji-Caire-Molisch, 2014

- In coded caching, in placement phase, the demand of the each user is not known
- In coded MapReduce, in job assignment, the server which reduces a key is known!

Why it works! N Subfiles, K Servers, Q Keys, Comp. Load r

Key Idea:

- When a subfile is assigned to a server, that server computes
 all (key,value) pairs for that subfiles.
- This imposes a **symmetry** to the problem.

Can We Do Better?

Theorem:

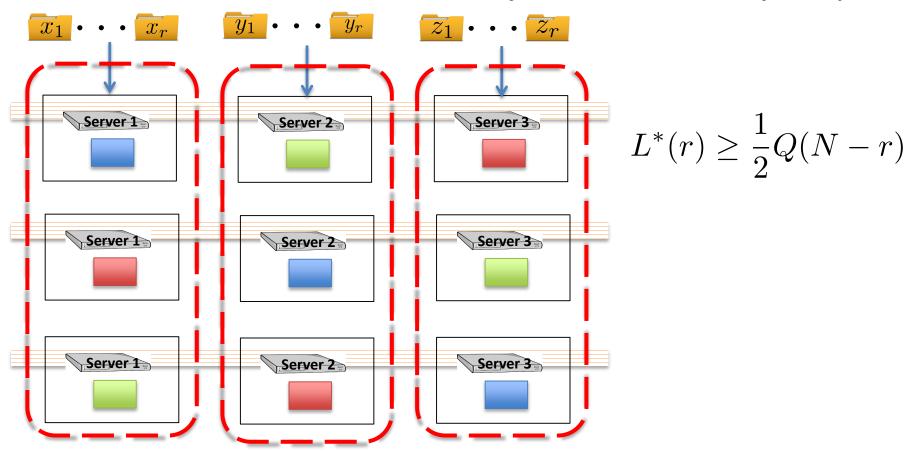
The proposed scheme is **optimum** within a **constant** factor in rate.

$$\alpha L_C(r) \le L^*(r) \le L_C(r)$$

Comm. Load (Coded)
$$L_C(r) = QN(1-\frac{r}{K})\frac{1}{r}$$

Outer Bound

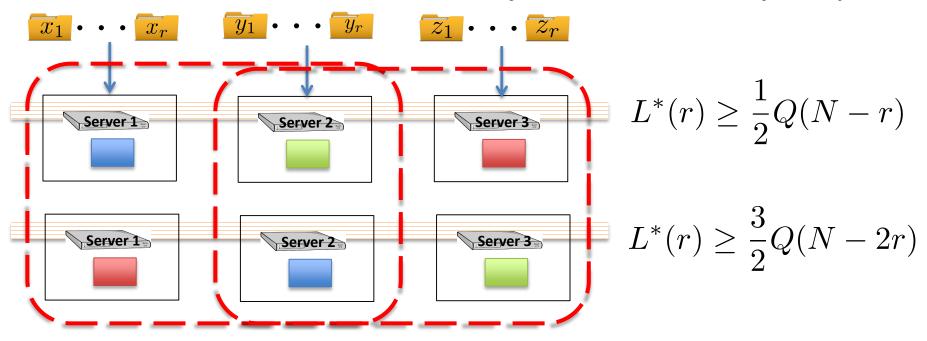
N=3 Subfiles, K=3 Servers, Q=3 Keys, Comp. Load r



 $R_{2} + R_{3} + R_{2}' + R_{3}' + R_{2}'' + R_{3}'' + rQ \ge NQ$ $R_{1} + R_{3} + R_{1}' + R_{3}' + R_{1}'' + R_{3}'' + rQ \ge NQ$ $R_{1} + R_{2} + R_{1}' + R_{2}' + R_{1}'' + R_{2}'' + rQ \ge NQ$

Outer Bound

N=3 Subfiles, K=3 Servers, Q=3 Keys, Comp. Load r



 $R_3 + R'_3 + 2rQ \ge NQ$ $R_1 + R'_1 + 2rQ \ge NQ$ $R_2 + R'_2 + 2rQ \ge NQ$

Conclusion

- Communication-Computation tradeoff is of great interests and challenging
- Coded MapReduce provides a near optimal framework for trading "computing" with "communication" in distributed computing
- Communication load x Computation load is approximately constant
- Many future directions:
 - Impact of Coded MapReduce on the overall run-time of MapReduce
 - General server topologies
 - Applications to wireless distributed computing ("wireless Hadoop")
- Papers available on arxiv.