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Computing Communication

Storage

The interaction among major components is the limiting barrier! 

Infrastructure for big data 



Computing Communication

Fundamental tradeoff between Computing and Communication

In this talk



Minimum communication for a specific computation task? 

Computer Science (Yao 1979) Information Theory (Korner and Marton 1979) 

Shortcomings:
• Problem oriented 
• Does not scale

Need a framework that is
• General
• Scalable

Formulation

What does data companies are using? 

Challenge: right formulation 



Hadoop Distributed File Systems 
(HDFS)
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Refer to Yesterdays’ Talks: 
• Alexander Barg
• Alexander Dimakis

MapReduce

Storage Computation
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N Subfiles, K Servers, Q Keys

Shuffling Phase

MapReduce: A General Framework

Intermediate (Key, Value) 
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Intermediate (Key, Value) 

Number of A’s 
in chapter one
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MapReduce: A General Framework

General Framework
• Matrix Multiplication
• Distributed 

Optimization
• Page Rank
• ….

Active Research Area: 
How to fit different jobs 
into this framework. 



N=6 Subfiles, K=3 Servers, Q=3 Keys
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Communication Load (MR)

Communication is a 
bottleneck!
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Communication Load

Can we reduce communication load at the cost of computation? 
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Comm. Load (Uncoded)

Locally available



Computation Load
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Communication Load

Comm. Load (Map Reduce)

Comm. Load (Uncoded)

Can we do better? 
Can we get a non-vanishing gain for large K? 

N Subfiles, K Servers, Q Keys, Comp. Load r
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Coded MapReduce

Each Coded (key,value) pairs are useful for two servers 

Comm. Load (Coded)

Comm. Load (Uncoded)

N Subfiles, K Servers, Q Keys, Comp. Load r
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Computation Load
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Communication Load

Comm. Load (Uncoded)

Comm. Load (Map Reduce)

Comm. Load (Coded)

N Subfiles, K Servers, Q Keys, Comp. Load r

Communication Load x Computation Load ~ constant



Objective: Each server can coded intermediate (Key, Value) pairs that are 

useful for r other servers

Need to assign the sub-files such that:

- for every subset S of r+1 servers,

- and for every subset T of S with r servers,

- Servers in T share an intermediate (Key, Value) pairs useful for server S\T

Proposed Scheme

⊕⊕⊕

S

T

N Subfiles, K Servers, Q Keys, Comp. Load r



-N sub-files:  W1 , W2 , …, WN  

- Each subset of size r of the servers takes a unique batch 
of subfiles.  

Proposed Scheme

- Split the set of subfiles to           batch of subfiles. 

N Subfiles, K Servers, Q Keys, Comp. Load r



N=1200 Subfiles, K=10 Servers, Q=10 Keys

Coded MapReduce-Delay Profile

As soon as r copes of a mapping is done, kills that mapping on other servers.

Map time duration: Exponential random variable

r=1

r=2

r=3

r=4
r=5

r=6
r=7



Connection with Coded Caching

A1# A2# A3#

B1# B2# B3#

C1# C2# C3#

A1# B1# C1# A2# B2# C2# A3# B3# C3#

A2 B1%

A3 C1%

B3 C2%

Maddah-Ali-Niessen, 2012 Ji-Caire-Molisch, 2014 

- In coded caching, in placement phase, the demand of the each user is not known

- In coded MapReduce, in job assignment, the server which reduces a key is known!



Why it works!

Key Idea: 

- When a subfile is assigned to a server, that server computes 

all (key,value) pairs for that subfiles.

- This imposes a symmetry to the problem. 

N Subfiles, K Servers, Q Keys, Comp. Load r



Can We Do Better?

The proposed scheme is optimum within a constant factor in rate.

Theorem: 

Comm. Load (Coded)



Outer Bound
N=3 Subfiles, K=3 Servers, Q=3 Keys, Comp. Load r
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Outer Bound
N=3 Subfiles, K=3 Servers, Q=3 Keys, Comp. Load r
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Conclusion

• Communication-Computation tradeoff is of great interests and challenging 

• Coded MapReduce provides a near optimal framework for trading 
“computing” with “communication” in distributed computing

• Communication load x Computation load is approximately constant

• Many future directions:

– Impact of Coded MapReduce on the overall run-time of MapReduce

– General server topologies 

– Applications to wireless distributed computing (“wireless Hadoop”)

• Papers available on arxiv. 


