
Delay-Constrained Unicast:
Improved upper bounds

Sudeep Kamath

Joint work with

Chandra Chekuri Sreeram Kannan Pramod Viswanath
DIMACS workshop on Network Coding, 17 December 2015

0 / 10



Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data

Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns

Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial data
Intra-flow coding has fewer security and privacy concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

Practical constraint - eg. video streaming, financial
data
Intra-flow coding has fewer security and privacy
concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

How large can this ratio be?

Practical constraint - eg. video streaming, financial
data
Intra-flow coding has fewer security and privacy
concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

How large can this ratio be?

2 ≤ sup
graphs

Capacity

Flow
≤ D + 1

Practical constraint - eg. video streaming, financial
data
Intra-flow coding has fewer security and privacy
concerns
Implementation aligned with self-interest

1 / 10



Single flow with delay constraint D

For this network 

with D=6, 

Capacity

Flow
=

4

3

Delay-constrained unicast [Wang-Chen '14]

How large can this ratio be?

2 ≤ sup
graphs

Capacity

Flow
≤ D + 1 We improve 

over this 

Practical constraint - eg. video streaming, financial
data
Intra-flow coding has fewer security and privacy
concerns
Implementation aligned with self-interest

1 / 10



Combinatorial

Optimization

Network

Information

Theory

This work

2 / 10



Combinatorial

Optimization

Network

Information

Theory

This work

Multi-commodity

flow problem

2 / 10



Combinatorial

Optimization

Network

Information

Theory

This work

Multi-commodity

flow problem

Multiple-unicast

problem

2 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

×

d2 d1

Flow = 1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

× ×

×

d2 d1

Flow = 1

EdgeCut = 1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

× ×

×

d2 d1

Flow = 1

EdgeCut = 1

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

EdgeCut = 1

a⊕ b

a b
a
⊕
ba

⊕
b

a b

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

EdgeCut = 1

a⊕ b

a b
a
⊕
ba

⊕
b

a b

Capacity = 2

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

EdgeCut = 1

a⊕ b

a b
a
⊕
ba

⊕
b

a b

Capacity = 2

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

EdgeCut = 1

a⊕ b

a b
a
⊕
ba

⊕
b

a b

Capacity = 2

3 / 10



Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(si, di)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from si to di ∀i

Capacity: Maximum information flow

EdgeCut ̸= Cutset bound

Capacity ≤ Cutset bound

However, we may have
EdgeCut < Capacity

s1 s2

d2 d1

Flow = 1

EdgeCut = 1

a⊕ b

a b
a
⊕
ba

⊕
b

a b

Capacity = 2

3 / 10



4 / 10



Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

4 / 10



Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate
Linear coding not sufficient,

entropic cone necessary

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



0 EdgeCut CapacityFlow

Can be multiplicative factor k apart 

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06], 

[Ambühl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07], 

[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

Linear 

Program

NP-hard,

hard to approximate
Linear coding not sufficient,

entropic cone necessary

Flow ≤ EdgeCut Flow ≤ Capacity EdgeCut ≶ Capacity

Flow = EdgeCut = CapacityFor k = 1: 

(Max-Flow Min-Cut Theorem)

For k ≥ 2: 

4 / 10



Triangle-cast

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

si to di for all i

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

si to di for all i

Triangle-cast: flow from

si to dj for all i ≥ j

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

k(k + 1)

2
flows

si to di for all i

Triangle-cast: flow from

si to dj for all i ≥ j

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

k(k + 1)

2
flows

si to di for all i

Triangle-cast: flow from

si to dj for all i ≥ j

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

k(k + 1)

2
flows

si to di for all i

Triangle-cast: flow from

si to dj for all i ≥ j

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound [K.-Tse-Anantharam ’11]

5 / 10



Triangle-cast

s1

s2

sk

d1

d2

dk

Directed Graph

Multiple-unicast: flow from

k(k + 1)

2
flows

si to di for all i

Triangle-cast: flow from

si to dj for all i ≥ j

Main Result 1: For triangle-cast as above,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Main ideas:
Adaptation of a “region-growing” technique
[Garg-Vazirani-Yannakakis ’96]
Generalized Network Sharing bound
[K.-Tse-Anantharam ’11]

5 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D + 1)

D = Delay

6 / 10



Reproduced from xkcd.com

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

Information delivered earlier is ok!

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

Information delivered earlier is ok!

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

Information delivered earlier is ok!

Hence, triangle-cast!

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



s
(1) d

(1)

d
(2)

d
(3)

d
(4)

d
(5)

s
(2)

s
(3)

s
(4)

s
(5)

s1

s2

d2

d1

s3

d3

Time 0 

Time 1 

Time 2 Time D 

Time D+1 

Time D+2 

Multiple-unicast

Information delivered earlier is ok!

Hence, triangle-cast!

s d

Delay constraint D = 2

Delay constrained network

Main Result 2

Capacity
Flow ≤ 8 loge(D+1)

D = Delay

6 / 10



Open 1: “Multicast”

s

d1 d2
d3

Multicast: same information to
all destinations

What happens with delay
constraint?

Practical constraint
Intra-flow coding
Coding strategies? -
Random coding does not
work

7 / 10



Open 1: “Multicast”

s

d1 d2
d3

Multicast: same information to
all destinations

What happens with delay
constraint?

Practical constraint
Intra-flow coding
Coding strategies? -
Random coding does not
work

7 / 10



Open 1: “Multicast”

s

d1 d2
d3

Multicast: same information to
all destinations

What happens with delay
constraint?

Practical constraint
Intra-flow coding
Coding strategies? -
Random coding does not
work

7 / 10



Open 2: “Triangle-cast gap”
Theorem (this work)

For k-triangle-cast,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Conjecture

For k-triangle-cast,

EdgeCut
2

≤ Flow ≤ Capacity ≤ EdgeCut

Hence, for delay-constrained unicast,

Capacity
Flow ≤ 2

8 / 10



Open 2: “Triangle-cast gap”
Theorem (this work)

For k-triangle-cast,

EdgeCut
4 loge(k + 1)

≤ Flow ≤ Capacity ≤ EdgeCut

Conjecture

For k-triangle-cast,

EdgeCut
2

≤ Flow ≤ Capacity ≤ EdgeCut

Hence, for delay-constrained unicast,

Capacity
Flow ≤ 2

8 / 10



Open 3: “Symmetry Principle”

Principle

Under suitable symmetry in traffic pattern,
Flow,EdgeCut,Capacity are all not “too far” apart.

9 / 10



Open 3: “Symmetry Principle”

F : Flow
EC : EdgeCut
C : Capacity

Bidirected

Networks

Symmetric

Demands

Group-cast

Triangle-cast

[Leighton-Rao '88]

[Linial-London-Rabinovich '94]

[This work] [This work]

[Klein-Plotkin-Rao-Tardos '93]

[Naor-Zosin '01] [K.-Viswanath '12]

[K.-Viswanath '12]

[K.-Viswanath '12]

EC

Θ(log k)
≤ F ≤ EC

EC

Θ(log3 k)
≤ F ≤ EC

EC

2
≤ F ≤ EC

EC

Θ(log k)
≤ F ≤ EC

F ≤ C ≤ EC

F ≤ C ≤ 2× EC

F ≤ C ≤ EC

F ≤ C ≤ EC

9 / 10



Open 3: “Symmetry Principle”

F : Flow
EC : EdgeCut
C : Capacity

Bidirected

Networks

Symmetric

Demands

Group-cast

Triangle-cast

[Leighton-Rao '88]

[Linial-London-Rabinovich '94]

[This work] [This work]

[Klein-Plotkin-Rao-Tardos '93]

[Naor-Zosin '01] [K.-Viswanath '12]

[K.-Viswanath '12]

[K.-Viswanath '12]

EC

Θ(log k)
≤ F ≤ EC

EC

Θ(log3 k)
≤ F ≤ EC

EC

2
≤ F ≤ EC

EC

Θ(log k)
≤ F ≤ EC

F ≤ C ≤ EC

F ≤ C ≤ 2× EC

F ≤ C ≤ EC

F ≤ C ≤ EC

9 / 10



Open 3: “Symmetry Principle”

F : Flow
EC : EdgeCut
C : Capacity

Bidirected

Networks

Symmetric

Demands

Group-cast

Triangle-cast

[Leighton-Rao '88]

[Linial-London-Rabinovich '94]

[This work] [This work]

[Klein-Plotkin-Rao-Tardos '93]

[Naor-Zosin '01] [K.-Viswanath '12]

[K.-Viswanath '12]

[K.-Viswanath '12]

EC

Θ(log k)
≤ F ≤ EC

EC

Θ(log3 k)
≤ F ≤ EC

EC

2
≤ F ≤ EC

EC

Θ(log k)
≤ F ≤ EC

F ≤ C ≤ EC

F ≤ C ≤ 2× EC

F ≤ C ≤ EC

F ≤ C ≤ EC

???

9 / 10



Conclusion

s1

s2

sk

d1

d2

dk

Directed Graph

Triangle-cast: flow from

si to dj for all i ≥ j

=
⇒

Capacity

Flow
≤ 8 log

e
(D + 1)

Showed a 4 log
e
(k + 1) Flow − EdgeCut− Capacity

approximation guarantee

Delay-constrained unicast (delay D) has

s1

s2

sk

d1

d2

dk

Directed Graph

10 / 10


