Delay-Constrained Unicast: Improved upper bounds

Sudeep Kamath

Joint work with

Chandra Chekuri Sreeram Kannan Pramod Viswanath DIMACS workshop on Network Coding, 17 December 2015

Delay-constrained unicast [Wang-Chen '14]

Delay-constrained unicast [Wang-Chen '14] Single flow with delay constraint D

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Given a directed graph and k source-destination pairs $\{(s_i,d_i)\}$

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

 $EdgeCut \neq Cutset bound$

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

EdgeCut ≠ Cutset bound

Capacity \leq Cutset bound

Given a directed graph and k source-destination pairs $\{(s_i, d_i)\}$

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal disconnects all paths from s_i to $d_i \forall i$

Capacity: Maximum information flow

EdgeCut \neq Cutset bound

Capacity ≤ Cutset bound

However, we may have EdgeCut < Capacity

(Max-Flow Min-Cut Theorem)

For k = 1: Flow = EdgeCut = Capacity

Why bother with EdgeCut if Flow is a linear program?

For k = 1: Flow = EdgeCut = Capacity

Why bother with EdgeCut if Flow is a linear program?

Triangle-cast

Main Result 1: For triangle-cast as above,

 $\frac{\mathsf{EdgeCut}}{4\log_e(k+1)} \leq \mathsf{Flow} \leq \mathsf{Capacity} \leq \mathsf{EdgeCut}$

Main Result 1: For triangle-cast as above,

$$\frac{\mathsf{EdgeCut}}{4\log_e(k+1)} \le \mathsf{Flow} \le \mathsf{Capacity} \le \mathsf{EdgeCut}$$

Main Result 1: For triangle-cast as above,

 $\frac{\mathsf{EdgeCut}}{4\log_e(k+1)} \leq \mathsf{Flow} \leq \mathsf{Capacity} \leq \mathsf{EdgeCut}$

Reproduced from xkcd.com

Open 1: "Multicast"

Multicast: same information to all destinations

Open 1: "Multicast"

What happens with delay constraint?

Multicast: same information to all destinations

Open 1: "Multicast"

Multicast: same information to all destinations

What happens with delay constraint?

- Practical constraint
- Intra-flow coding
- Coding strategies? -Random coding does not work

Open 2: "Triangle-cast gap"

Theorem (this work)

For k-triangle-cast,

$$\frac{\mathsf{EdgeCut}}{4\log_e(k+1)} \le \mathsf{Flow} \le \mathsf{Capacity} \le \mathsf{EdgeCut}$$

Open 2: "Triangle-cast gap"

Theorem (this work)

For k-triangle-cast,

$$\frac{\mathsf{EdgeCut}}{4\log_e(k+1)} \le \mathsf{Flow} \le \mathsf{Capacity} \le \mathsf{EdgeCut}$$

Conjecture

For k-triangle-cast,

$$\frac{\mathsf{EdgeCut}}{2} \le \mathsf{Flow} \le \mathsf{Capacity} \le \mathsf{EdgeCut}$$

Hence, for delay-constrained unicast,

$$\frac{\mathsf{Capacity}}{\mathsf{Flow}} \le 2$$

Principle

Under suitable symmetry in traffic pattern, Flow, EdgeCut, Capacity are all not "too far" apart.

F : Flow EC : EdgeCut C : Capacity

F : Flow EC : EdgeCut C : Capacity

Bidirected	$\frac{EC}{\Theta(\log k)} \le F \le EC$	$F \le C \le EC$
INELWORKS	[Leighton-Rao '88] [Linial-London-Rabinovich '94]	[KViswanath '12]
Symmetric Demands	$\frac{EC}{\Theta(\log^3 k)} \le F \le EC$	$F \le C \le EC$
	[Klein-Plotkin-Rao-Tardos '93]	[KViswanath '12]
Group-cast	$\frac{EC}{2} \le F \le EC$	$F \leq C \leq 2 \times EC$
	[Naor-Zosin '01]	[KViswanath '12]
Triangle-cast	$\frac{EC}{\Theta(\log k)} \le F \le EC$	$F \leq C \leq EC$
	[This work]	[This work]

F : Flow EC : EdgeCut C : Capacity

Bidirected Networks	$\frac{EC}{\Theta(\log k)} \leq F \leq EC$ [Leighton-Rao '88] [Linial-London-Rabinovich '94]	$F \leq C \leq EC$
Symmetric Demands	$rac{EC}{\Theta(\log^3 k)} \leq F \leq EC$ [Klein-Plotkin-Rao-Tardos '93]	$F \leq C \leq EC$ [KViswanath '12]
Group-cast	$\frac{EC}{2} \le F \le EC$ [Naor-Zosin [01]]	$F \leq C \leq 2 \times EC$
Triangle-cast	$\frac{EC}{\Theta(\log k)} \leq F \leq EC$ [This work]	$F \leq C \leq EC$ [This work]
???		

Conclusion

