Analyzing Large Communication Networks

Shirin Jalali

joint work with Michelle Effros and Tracey Ho

Dec. 2015

The gap

Fundamental questions:

- i. What is the best achievable performance?
- ii. How to communicate over such networks?

Huge gap between theoretically analyzable and practical networks

visualization of the various routes through

a portion of the Internet from "The Opte Project".

This talk

Bridge the gap

develop generic network analysis tools and techniques

Contributions:

- Noisy wireline networks:
 - o Separation of source-network coding and channel coding is optimal
- Wireless networks:
 - o Find outer and inner bounding noiseless networks.
- Noiseless wireline networks:
 - o HNS algorithm

Noisy wired networks

General wireline network

Example: Internet

Each user:

- sends data
- receives data from other users

Users observe dependent information

Wireline network

Represented by a directed graph:

- nodes = users and relays
- directed edges = point-to-point noisy channels

Node *a*:

- observes random process $U^{(a)}$
- sources are dependent
- reconstructs a subset of processes observed by other nodes
- lossy or lossless reconstructions

Node operations

Node *a* observes $U^{(a),L}$.

Encoding at Node a:

- ▶ *t* = 1, 2, ..., *n*
- ▶ Map U^{(a),L} and received signals up to time t-1 to the inputs of its outgoing channels

$$X_{j,t} = f_{j,t}(U^{(a),L}, Y_1^{t-1}, Y_2^{t-1})$$

Node operations

Decoding at Node *a*:

At time t = n, maps $U^{(a),L}$ and its received signals to the reconstruction blocks.

• $\hat{U}^{(c \rightarrow a),L}$: reconstruction of node a from the data at node c

Performance measure

1. Rate:

Joint source-channel-network: $\kappa \triangleq \frac{L}{n} = \frac{\text{source blocklength}}{\text{channel blocklength}}$

- 2. Reconstruction quality:
 - $U^{(a),L}$: observed block by node a
 - $\hat{U}^{(a \to c),L}$: reconstruction of node c from the data at node a
 - i. Block-error probability (Lossless reconstruction):

 $\mathbb{P}(U^{(a),L} \neq \hat{U}^{(a \to c),L}) \to 0$

ii. Expected average distortion (Lossy reconstruction):

 $\mathrm{E}[d(U^{(a),L},\hat{U}^{(a\to c),L})] \to D(a,c)$

Separation of source-network coding and channel-network coding

Does separation hurt the performance?

bit-pipe of capacity C carries $\lfloor nC \rfloor$ bits error-free over n communications.

Theorem (SJ, Effros 2015)

Separation of source-network coding and channel coding is optimal in a wireline network with dependent sources.

Separation of source-network coding and channel-network coding

Does separation hurt the performance?

bit-pipe of capacity C carries $\lfloor nC \rfloor$ bits error-free over n communications.

Theorem (SJ, Effros 2015)

Separation of source-network coding and channel coding is optimal in a wireline network with dependent sources.

Separation: wireline networks

Single source multicast:

[Borade 2002], [Song, Yeung, Cai 2006]

Independent sources with lossless reconstructions:

[Hassibi, Shadbakht 2007] [Koetter, Effros, Medard 2009]

	multi-	demands	dependent	lossless	lossy	continuous
	source		sources			channels
[Borade 2002][Song et al. 2006]	no	multicast	no	yes	no	no
[Hassibi et al. 2007] [Koetter et al. 2009]	yes	arbitrary	no	yes	no	yes

Results

- 1. Separation of source-network coding and channel coding in wireline network with lossy and lossless reconstructions
- 2. Equivalence of zero-distortion and lossless reconstruction in general memoryless networks

	multi-	demands	dependent	lossless	lossy	continuous
	source		sources			channels
[Borade 2002] [Song et al. 2006]	no	multicast	no	yes	no	no
[Koetter et al. 2009]	yes	arbitrary	no	yes	no	yes
[SJ et al. 2015]	yes	arbitrary	yes	yes	yes	yes

Challenge: optimal region in not known!

Approach: any performance achievable on original network is achievable on the network of bit-pipes and vice versa.

Main ingredients:

- stacked networks
- channel simulation

Stacked network

Notation:

- Rate $\kappa = \frac{L}{n} = \frac{\text{source blocklength}}{\text{channel blocklength}}$
- ► N: original network

Defintions:

- $\mathcal{D}(\kappa, \mathcal{N})$: set achievable distortions on \mathcal{N}
- ▶ <u>N</u>: m-fold stacked version consisting of m copies of the original network [Koetter et al. 2009]

Theorem (SJ, Effros 2015)
$$\mathcal{D}(\kappa, \mathcal{N}) = \mathcal{D}(\kappa, \underline{\mathcal{N}})$$

$$\mathscr{D}(\kappa, \underline{\mathscr{N}}_b) = \mathscr{D}(\kappa, \underline{\mathscr{N}})$$

 $\mathcal{N} = \text{original network}$

 $\mathcal{N}_b = \text{corresponding network of bit-pipes}$

$$\mathscr{D}(\kappa, \mathscr{N}) \stackrel{?}{=} \mathscr{D}(\kappa, \mathscr{N}_b)$$

It is enough to show that

$$\mathscr{D}(\kappa, \underline{\mathscr{N}}) = \mathscr{D}(\kappa, \underline{\mathscr{N}}_{h}).$$

i. $\mathscr{D}(\kappa, \underline{\mathscr{N}}_b) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}})$: easy (channel coding across the layers) ii. $\mathscr{D}(\kappa, \underline{\mathscr{N}}) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}}_b)$ Proof of $\mathscr{D}(\kappa, \underline{\mathscr{N}}) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}}_b)$

Consider a noisy channel in \mathcal{N} and its copies in $\underline{\mathcal{N}}$.

For t = 1, ..., n:

Define:

Proof of $\mathscr{D}(\kappa, \underline{\mathscr{N}}) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}}_{h})$

Consider a noisy channel in \mathcal{N} and its copies in $\underline{\mathcal{N}}$.

For t = 1, ..., n:

Define:

Proof of $\mathscr{D}(\kappa, \underline{\mathscr{N}}) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}}_b)$

In the original network:

$$E[d(U^{L}, \hat{U}^{L})] = \sum_{x, y} E[d(U^{L}, \hat{U}^{L}) | (X_{t}, Y_{t}) = (x, y)] P((X_{t}, Y_{t}) = (x, y)).$$

Applying the same code across the layers in the m-fold stacked network:

$$E[d(U^{mL}, \hat{U}^{mL})] = \sum_{x,y} E[d(U^{L}, \hat{U}^{L}) | (X_{t}, Y_{t}) = (x, y)] E[\hat{p}_{[X_{t}^{m}, Y_{t}^{m}]}(x, y)].$$

Goal:

 $p_t(x)p(y|x) \approx \mathbb{E}[\hat{p}_{[X_t^m, Y_t^m]}(x, y)]$

Proof of $\mathscr{D}(\kappa, \underline{\mathscr{N}}) \subset \mathscr{D}(\kappa, \underline{\mathscr{N}}_b)$

In the original network:

$$E[d(U^{L}, \hat{U}^{L})] = \sum_{x, y} E[d(U^{L}, \hat{U}^{L}) | (X_{t}, Y_{t}) = (x, y)] P((X_{t}, Y_{t}) = (x, y)).$$

Applying the same code across the layers in the m-fold stacked network:

$$E[d(U^{mL}, \hat{U}^{mL})] = \sum_{x,y} E[d(U^{L}, \hat{U}^{L}) | (X_{t}, Y_{t}) = (x, y)] E[\hat{p}_{[X_{t}^{m}, Y_{t}^{m}]}(x, y)].$$

Goal:

 $p_t(x)p(y|x)\approx \mathrm{E}[\hat{p}_{[X_t^m,Y_t^m]}(x,y)]$

Channel simulation

Channel $p_{Y|X}(y|x)$ with i.i.d. input $X \sim p_X(x)$

Simulate this channel:

If R > I(X; Y), such family of codes exists.

Since $R = C = \max_{p(x)} I(X; Y)$, such a code always exists.

Channel simulation

Channel $p_{Y|X}(y|x)$ with i.i.d. input $X \sim p_X(x)$

Simulate this channel:

$$\|p_{X,Y} - \hat{p}_{[X^m,Y^m]}\|_{\mathrm{TV}} \xrightarrow{n \to \infty} 0$$
, a.s.

If R > I(X; Y), such family of codes exists.

Since $R = C = \max_{p(x)} I(X; Y)$, such a code always exists.

Channel simulation

Channel $p_{Y|X}(y|x)$ with i.i.d. input $X \sim p_X(x)$

Simulate this channel:

$$\|p_{X,Y} - \hat{p}_{[X^m,Y^m]}\|_{\mathrm{TV}} \xrightarrow{n \to \infty} 0$$
, a.s.

If R > I(X; Y), such family of codes exists.

Since $R = C = \max_{p(x)} I(X; Y)$, such a code always exists.

Results

So far we proved separation of $\ensuremath{\mathsf{lossy}}$ source-network coding and channel coding

	multi-	demands	correlated	lossless	lossy	continuous
	source		sources			channels
[Borade 2002][Song et al. 2006]	no	multicast	no	yes	no	no
[Koetter et al. 2009]	yes	arbitrary	no	yes	no	yes
[SJ et al. 2010]	yes	arbitrary	yes	no	yes	no

Lossless vs. D = 0

A family of lossless codes is also zero-distotion

Lossless reconstruction:

$$\mathbb{P}(U^L \neq \hat{U}^L) \to 0$$

For bounded distortion:

$$\mathbb{E}[d(U^L, \hat{U}^L)] \leq d_{\max} \mathbb{P}(U^L \neq \hat{U}^L) \to 0$$

But:

only implies

A family of zero-distortion codes is not lossless $E[d(U^{L}, \hat{U}^{L})] \rightarrow 0,$ $\{i: U_{i} \neq \hat{U}_{i}\}$

$$\frac{\{i: U_i \neq U_i\}}{n} \to 0.$$

Lossless vs. D = 0: point-to-point network

Lossless reconstruction:

 $R \ge H(U)$

Lossy reconstruction:

$$R(D) = \min_{p(\hat{u}|u): \mathbb{E} d(U,\hat{U}) \le D} I(U;\hat{U})$$

• At D = 0:

$$R(0) = \min_{\substack{p(\hat{u}|u): E[d(U,\hat{U})] = 0}} I(U;\hat{U}) = I(U;U) = H(U).$$

• minimum required rates for lossless reconstruction and D = 0 coincide.

Lossless vs. D = 0: multi-user network

Explicit characterization of the rate-region is unknown for general multi-user networks.

[Gu et al. 2010] proved the equivalence of zero-distortion and lossless reconstruction in error-free wireline networks:

$$\mathscr{R}(D)|_{D=0} = \mathscr{R}_L$$

Lossless vs. D = 0: multi-user network

In a general memoryless network [wired or wireless]:

Theorem (SJ, Effros 2015)

If for any $s \in \mathscr{S}$, $H(U_s|U_{\mathscr{S}\setminus s}) > 0$, then achievability of zero-distortion is equivalent to achievability of lossless reconstruction.

Recap

Wireline networks:

Proved that we can replace noisy point-to-point channels with error-free bit pipes

What about wireless networks?

Recap

Wireline networks:

Proved that we can replace noisy point-to-point channels with error-free bit pipes

What about wireless networks?

Noisy wireless networks

Wireless networks

General multi-user network:

Separation of channel coding and source-network coding fails

The proof techniques can be extended to derive outer and inner bounding networks of bit pipes

[Jalali, Effros 2011]

Outer/inner bounding network

Network \mathcal{N}_o is an outer bounding network for \mathcal{N} iff

 $\mathcal{D}(\kappa,\mathcal{N})\subseteq \mathcal{D}(\kappa,\mathcal{N}_0)$

Network \mathcal{N}_i is an inner bounding network for \mathcal{N} iff

 $\mathcal{D}(\kappa, \mathcal{N}_i) \subseteq \mathcal{D}(\kappa, \mathcal{N})$

Set of achievable distortions

on \mathcal{N} , \mathcal{N}_i , \mathcal{N}_o

Examples

Multiple access channel (MAC):

Broadcast channel (BC):

wireline network \equiv network of bit pipes

network of bit pipes \subset wireless network \subset network of bit pipes

Noiseless wired networks

Noisy to noiseless

Acyclic noiseless network represented by a directed graph:

directed edge e = bit-pipe of capacity C_e

Question: What is the set of achievable rates?

Network coding: known results

- 1. Multicast: each receiver reconstructs all sources
 - Max-flow min-cut bound is tight

[Ahlswede et al. 2000]

Linear codes suffices for achieving capacity

[Li, Yeung, Cai 2003] [Koetter, Medard 2003]

- 2. Non-multicast: arbitrary demands
 - Linear codes are insufficient

[Dougherty, Freiling, Zeger, 2005]

Capacity region is an open problem

[Yeung 2002] [Song, Yeung 2003] [Yeung, Cai, Li, Zhang 2005] [Yan, Yeing, Zhang 2007]

Known bounds

Outer bounds:

- LP outer bound
 - i. Tightest outer bound implied by Shannon inequalities
 - ii. Software program: Information Theoretic Inequalities Prover (ITIP) $\space{-1mu}$ [Yeung 97]

Inner bounds:

Optimizing over scalar or vector linear network codes

[Médard and Koetter 2003] [Chan 2007]

Main challenge:

computational complexity of evaluating bounds is huge

Known bounds

Outer bounds:

- LP outer bound
 - i. Tightest outer bound implied by Shannon inequalities
 - ii. Software program: Information Theoretic Inequalities Prover (ITIP) $\space{-1mu}$ [Yeung 97]

Inner bounds:

Optimizing over scalar or vector linear network codes

[Médard and Koetter 2003] [Chan 2007]

Main challenge:

computational complexity of evaluating bounds is huge

Topological operations (component modeling)

Goal:

find a (inner or outer) bounding network of smaller size

Idea:

- topological simplifications using recursive network operations
- replace a component with another smaller and functionally equivalent component

Functionally equivalent networks

For *any input distribution*, the two networks have identical set of achievable functional demands.

General procedure

Create a library of network simplification operations.

At each step:

- i. Select a component in the network.
- ii. Replace it by its equivalent or bounding component from the library.

General procedure

Create a library of network simplification operations.

At each step:

- i. Select a component in the network.
- ii. Replace it by its equivalent or bounding component from the library.

General procedure

Create a library of network simplification operations.

At each step:

- i. Select a component in the network.
- ii. Replace it by its equivalent or bounding component from the library.

Example

Lemma

Let $\beta \triangleq \frac{b'}{b+b'}$. If $\beta a + (1 - \beta)c \leq d$. networks \mathcal{N}_1 and \mathcal{N}_2 are equivalent.

[Ho, Effros, SJ 2010]

Rerouting flow

Removing edge $e \Rightarrow$ lower bounding network

Rerouting flow of edge *e* over other paths $(\sum \alpha_i = 1) \Rightarrow$ upper bounding network

Consider network (\mathcal{N}, c) and let

- (\mathcal{N}_0, c_0) : outer bounding network for \mathcal{N}
- (\mathcal{N}_i, c_i) : inner bounding network for \mathcal{N}

Question: How to compare the bounds?

Assume \mathcal{N}_o and \mathcal{N}_i have identical topologies.

Difference factor between \mathcal{N}_i and \mathcal{N}_o is defined:

$$\Delta = \Delta(c_i, c_o) \triangleq \max_{e \in \mathscr{E}} \frac{c_{e,o}}{c_{e,i}} \ge 1$$

Multiplicative bound $\mathcal{R}_i \subseteq \mathcal{R}_o \subseteq \Delta \mathcal{R}_i.$

Consider network (\mathcal{N}, c) and let

- (\mathcal{N}_0, c_0) : outer bounding network for \mathcal{N}
- (\mathcal{N}_i, c_i) : inner bounding network for \mathcal{N}

Question: How to compare the bounds?

Assume \mathcal{N}_o and \mathcal{N}_i have identical topologies.

Difference factor between \mathcal{N}_i and \mathcal{N}_o is defined:

$$\Delta = \Delta(c_i, c_o) \stackrel{\Delta}{=} \max_{e \in \mathscr{E}} \frac{c_{e,o}}{c_{e,i}} \ge 1$$

Multiplicative bound $\Re_i \subseteq \Re_o \subseteq \Delta \Re_i.$

Consider network (\mathcal{N}, c) and let

- (\mathcal{N}_0, c_0) : outer bounding network for \mathcal{N}
- (\mathcal{N}_i, c_i) : inner bounding network for \mathcal{N}

Question: How to compare the bounds?

Assume \mathcal{N}_o and \mathcal{N}_i have identical topologies.

Difference factor between \mathcal{N}_i and \mathcal{N}_o is defined:

$$\Delta = \Delta(c_i, c_o) \triangleq \max_{e \in \mathscr{E}} \frac{c_{e,o}}{c_{e,i}} \ge 1$$

Multiplicative bound $\Re_i \subseteq \Re_o \subseteq \Delta \Re_i.$

Consider network (\mathcal{N}, c) and let

- (\mathcal{N}_0, c_0) : outer bounding network for \mathcal{N}
- (\mathcal{N}_i, c_i) : inner bounding network for \mathcal{N}

Question: How to compare the bounds?

Assume \mathcal{N}_o and \mathcal{N}_i have identical topologies.

Difference factor between \mathcal{N}_i and \mathcal{N}_o is defined:

$$\Delta = \Delta(c_i, c_o) \triangleq \max_{e \in \mathscr{E}} \frac{c_{e,o}}{c_{e,i}} \ge 1$$

Multiplicative bound $\Re_i \subseteq \Re_o \subseteq \Delta \Re_i.$

Hierarchical network simplification (HNS)

Given:

- network $G = (\mathcal{V}, \mathcal{E})$
- ▶ edge capacities (C_e)_{e∈E}

HNS: heuristic algorithm

Output of HNS:

- i. simpler feasible bounding network
- ii. capacities of upper and lower bounding network

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

HNS Step 1: layering

Add extra nodes

- sources at top level
- sinks at the bottom
- relay nodes at the intermediate layers

Number of layers:

length of longest path from a source to a sink

HNS Step 2: find and merge parallel paths

Find set of all parallel paths

Consider two such parallel paths:

- $\blacktriangleright \mathcal{P}: v_0 \to v_1 \to v_2 \to \dots v_{\ell-1} \to v_\ell$
- $\blacktriangleright \ \mathscr{P}': v_0 \to v_1' \to v_2' \to \dots v_{\ell-1}' \to v_\ell$

Coalesce \mathscr{P} and \mathscr{P}' iff

i. $\{v'_2, \dots, v'_{\ell-1}\}$ are all SISO nodes ii. for $i = 1, \dots, \ell - 1$,

$$\frac{C_{v'_i \to v'_{i+1}}}{C_{v_i \to v_{i+1}}} \le \gamma.$$

As the last topological step:

- i. remove all SISO nodes
- ii. combine parallel paths

Repeat the whole process (if necessary)

Output:

candidate bounding network of smaller size

As the last topological step:

- i. remove all SISO nodes
- ii. combine parallel paths

Repeat the whole process (if necessary)

Output:

candidate bounding network of smaller size

LP bounds

Given:

- ▶ Network \mathcal{N} with edge capacities $c = (c_e)_{e \in \mathscr{E}}$
- bounding topology *B*

Goal: find edge capacities $c_i = (c_{i,e})$ and $c_o = (c_{o,e})$ such that

$$\mathscr{B}(c_i) \subseteq \mathscr{N}(c) \subseteq \mathscr{B}(c_o)$$

Solution: characterize a set of LPs for finding c_i and c_o

[Effros, Ho, SJ 2010] [Effros, Ho, SJ, Xia 2012]

 $\begin{array}{ll} \min & c_m \\ \text{s.t.} & c_{e_2} \leq c_m, \forall \; e_2 \in \mathcal{E}_2 \\ & (c_2, f, r) \in \mathcal{M}(c_1) \end{array}$

Let c_m^* solution of LP 1

 $\mathcal{N}(c) \subseteq \mathcal{B}(c')$

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

44

 $\mathcal{N}(c) \subseteq \mathcal{B}(c')$

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

44

Let c_m^* solution of LP 1

 $\mathcal{N}(c) \subseteq \mathcal{B}(c')$

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

Let c_m^\ast solution of LP 1

 $\mathcal{N}(c)\subseteq \mathcal{B}(c')$

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

44

 $\begin{array}{l} \min \ k \\ \text{s.t.} \ (kc, f, r) \in \mathcal{M}(c') \end{array}$

Original network: $|\mathcal{V}| = 8$ and $|\mathcal{E}| = 16$

Simplified network: $|\mathcal{V}| = 4$ and $|\mathcal{E}| = 3$

HNS performance

Performance achieved by varying γ :

Original network: $|\mathcal{V}| = 20$ and $|\mathcal{E}| = 40$

Summary

Wireline networks:

Separation of source-network coding and channel coding is optimal.

Wireless networks:

Find outer and inner bounding noiseless networks.

New approach to analyzing noiseless networks:

- iterative method
- step-by-step reduces the size of the graph
- at each step: one component is replaced by an equivalent or bounding component