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1 - Reliability and Security




High rank submatrices protect against erasures and

eavesdroppers
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Details

Erasure channel
Encoding using GC yields a vector with entropy H(C).
For vectors observed outside the erased positions E ⊂ [n],

H(C) = H(C|E) (information gain) + I(C; E) (equivocation)

Wiretep channel II

Decoding using GT
D distinguishes vectors with entropy H(D).

For vectors observed in the eavesdropped positions E ⊂ [n],

H(D) = I(D; E) (information gain) + H(D|E) (equivocation)

H(C|E),H(D|E) = rank

( )
, for E =
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Protection against erasures AND eavesdroppers

Nested codes

Combine encoding via GC with decoding via GT
D

Transmission rate reduces from H(C) to H(C|D⊥) in return for a
higher threshold for the eavesdropper.

We may assume wlog that D⊥ ⊂ C (nested codes)

For vectors observed outside E ⊂ [n] (legitimate receiver),

H(C|D⊥) = H(C)− H(D⊥)

= H(C|E)− H(D⊥|E) (information gain)

+ I(C; E)− I(D⊥; E) (equivocation)
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Main example (Reed-Solomon)

GRS =



1 1 1 1 1 1 · · · · · · · · ·
x y z u v w
x2 y2 z2 u2 v2 w2

x3 y3 z3 u3 v3 w3

x4 y4 z4 u4 v4 w4

x5 y5 z5 u5 v5 w5 · · · · · · · · ·



B = rank


 = 6.
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2 - Efficient repair

Reed-Solomon codes provide maximum protection of a message
against erasures. 

 is full rank

However repair using RS-codes is inefficient. For RS-codes,

repair bandwith = rank


.


Other codes are more suitable when erasure repair is important
(e.g. in distributed storage).
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MSR construction (Rashmi-Shah-Kumar 2010)

GMSR =



1 0 1 0 1 0 · · · · · · · · ·
x 1 y 1 z 1
0 x 0 y 0 z
x2 0 y2 0 z2 0
x3 x2 y3 y2 z3 z2

0 x3 0 y3 0 z3 · · · · · · · · ·



B = rank

  = 6. (k = 3, α = 2)

γ = repair bandwith = 4 (d = 4, β = 1)

(modify if char 6= 2)
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MBR construction (Rashmi-Shah-Kumar 2010)

GMBR =



1 0 0 1 0 0 · · · · · · · · ·
x 1 0 y 1 0
0 x 0 0 y 0
x 1 0 y 1 0
x2 2x 1 y2 2y 1
0 x2 x 0 y2 y · · · · · · · · ·



B = rank

  = 5. (k = 2, α = 3)

γ = repair bandwith = 3 (d = 3, β = 1)
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Storage vs bandwith trade-off

MSR minimizes storage per disk.

MBR minimizes repair bandwith.

For exact repair solutions in between MBR and MSR,
the optimal trade-offs are an open problem.
Case n = k + 1 = d + 1 is solved

Tian; Sasidharan, Senthoor, Kumar; D;
Tian, Sasidharan, Aggarwal, Vaishampayan, Kumar;
Mohajer, Tandon; Prakash, Krishnan; D’
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Storing four bits on four disks

x , y , z, t

x , z + t

y , t + x

z, x + y

t , y + z

B = 4 n = 4

Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 11 / 29



Reading four bits from any two disks

x , z + t

y , t + x

z, x + y

t , y + z

k = 2α = 2

x , z + t
t , y + z

Iwan Duursma (U Illinois) Duality DIMACS - Dec 2015 12 / 29



Disk repair with help form any three disks

x , z + t

y , t + x

z, x + y

t , y + z t

z + t

t + x + y

z, x + y

d = 3β = 1
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Repair matrix

The repair matrix summarizes storage and repair for a regenerating
code.

W1

W2

W3

W4

S1→2 S1→3 S1→4

S2→1 S2→3 S2→4

S3→1 S3→2 S3→4

S4→1 S4→2 S4→3

Wi = data stored at node i
Si→j = helper information from node i to node j
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[D - arxiv 2014]
Theorem 1

Let Bq = H(W1) + · · ·+ H(Wq) +
∑

H(Si→j), such that B ≤ Bq.

Let q,q1, . . . ,qm−2, r , s > 0 such that (explicit condition). Then

mB ≤ Bq +
m−2∑
i=1

Bqi + Br+s − rsβ.

Theorem 2

Let Bq = H(W1) + · · ·+ H(Wq) +
∑

H(SM→L), such that B ≤ Bq.

For each (M,L), let ` = |L|, m = |M|, and let r ≥ `. Then

B +
∑
(M,L)

`B ≤ Bq +
∑
(M,L)

(Br+m−1 + (`− 1)(Br+m−2 − β)).
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[D arXiv 2015]

Theorem 3
For any set of parameters (n, k ,d), and for 0 ≤ ` ≤ k , 0 ≤ v ,(

v + 2
2

)
B ≤

(
v + 1

2

)
Bk + (v + 1)Bk−` − v

(
`

2

)
β.

Independently (special cases)

Prakash-Krishnan, arXiv 2015
Mohajer-Tandon, ITA/ISIT 2015a, ISIT2015b.
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3 - Constrained codes

David Forney (Talk at Allerton ’97)

Does the Golay code have a generator matrix of the form

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00
00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00
00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00
00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00

00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00 00
00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00 00
00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 00
00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ 00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 00 00 00 00 00 00 00 ∗∗


Answer: Yes (Calderbank-Forney-Vardy 1999)
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Characteristic matrices (Koetter-Vardy 2003)

A set of characteristic generators for the row space row G is a subset
of n vectors such that

1) Spans of vectors start and end in distinct positions, and

2) The sum of the spanlengths of the vectors is minimal.

A square matrix is called a characteristic matrix for G if its rows form a
set of characteristic generators.

Example

X =


1 1 1 0 0
0 1 1 0 1
0 0 1 1 0
0 1 0 1 1
1 0 0 0 1

 Y =


1 0 1 1 1
1 1 0 0 1
0 1 1 1 0
0 1 1 1 0
1 0 1 1 1
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Dual characteristic matrices

Question
Under what conditions is a pair of characteristic matrices in duality,
i.e. when does a pair define dual trellises?

Conjecture (KV 2003)
For a choice of lexicographically first characteristic generators for G
and for a matching choice of lexicographically first characteristic
generators for H, the obtained tail-biting trellises are in duality.

(Gleussen-Larssing and Weaver 2011)
Counterexample to the conjecture.

Characterization of dual characteristic matrices in terms of local duality
of trellises
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(GLW 2011)

Example

X =


1 1 0 0
0 1 1 1
1 0 1 1
0 1 1 1

 Y =


1 1 0 1
1 1 0 1
1 1 1 0
0 0 1 1



X ′ =


1 1 0 0
0 1 1 1
1 0 1 1
1 0 1 1

 Y ′ =


1 1 1 0
1 1 0 1
1 1 1 0
0 0 1 1


Conjecture: X ∼ Y . Local duality: X ∼ Y ′ and X ′ ∼ Y .
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-Adjusted- Conjecture holds (D 2015)

We define unique reduced characteristic matrices and show

Theorem
Reduced characteristic matrices are in duality.

Corollary
The KV conjecture holds if the characteristic generators for G are
lexicographically ordered in a forward direction and the characteristic
generators for H are lexicographically ordered in a reverse direction.

Furthermore, an explicit duality is given by

Theorem
A pair of characteristic matrices X and Y , with maximal orthogonal row
spaces, is in duality if and only if X and Y have orthogonal column
spaces.
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Simple Multiple Access Network
Sources Si transmit at rates ri to a unique receiver T via a layer of n
intermediate nodes. T observes (c1, c2, . . . , cn) ∈ C.

S1

S2

S3

x1

x1 + x2

x1 + x2 + x3

x2 + x3

x1 + x3

x2

x3

T

Shown is C = [7,3,4] simplex code.
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Related problems

Opportunistic data exchange

El Rouayheb, Sprintson, Sadeghi, ITW 2010
On coding for cooperative data exchange

Sensor networks

Dau, Song, Dong, Yuen, ISIT 2013
Balanced Sparsest generator matrices for MDS codes

Error-correction in networks

Dikaliotis, Ho, Jaggi, Vyetrenko, Yao, Effros, Kliewer, Erez, IT-2011
Multiple access network information-flow and correction codes
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Dual version (same network, arrows reversed)
Receivers Ri request data at rates ri from a unique source T via a
layer of n intermediate nodes. T uploads (y1, y2, . . . , yn).

R1

R2

R3

y1

y2

y3

y4

y5

y6

y7

T

e.g. R1 requests x1, to be obtained from y1, y2, y3, y4, y5.
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SMAN (reliable multiple access (S1,S2,S3) −→ T )

[
x1 x2 x3

]  x x x x x 0 0
0 x x x x x 0
0 0 x x x x x


=
[

c1 c2 c3 c4 c5 c6 c7
]

Dual version (secure broadcast T −→ (R1,R2,R3))

[
y1 y2 y3 y4 y5 y6 y7

]  x x x x x 0 0
0 x x x x x 0
0 0 x x x x x

T

=
[

x1 x2 x3
]
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Theorem

For the same three-layer network,

A SMAN can transmit at rates (r1, . . . , rk ) tolerating z erasures

if and only if

The dual version can reach receivers at rates (r1, . . . , rk ) tolerating
z eavesdroppers.
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Distributed Reed-Solomon codes
Given a generator matrix of the form

x 0 0 x x x x 0 0 x
x 0 0 x x x x 0 0 x
0 x 0 x x 0 0 x x x
0 x 0 x x 0 0 x x x
0 0 x 0 0 x x x x x
0 0 x 0 0 x x x x x


can the nonzero entries be chosen such that the matrix represents a
Reed-Solomon code?

Theorem (Halbawi, Ho, Yao, D ISIT 2014)

For any rate vector in the capacity region of a three-source SMAN, we
can construct a distributed Reed-Solomon code.
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Why is this difficult?

Question (http://math.stackexchange.com) 10/31/12
Dimension of Intersection of three vector spaces satisfying specific
postulates. Let A,B,C, be subspaces of V such that

dim A = dim A′,dim B = dim B′,dim C = dim C′

dim A∩B = dim A′∩B′, dim C∩B = dim C′∩B′, dim A∩C = dim A′∩C′

dim A + B + C = dim A′ + B′ + C′

Prove that dim A ∩ B ∩ C = dim A′ ∩ B′ ∩ C′. Thanks.

Answer
The result stated is false, so you need not bother to try and prove it.
MvL

Reply
Thank MvL. This is a great answer.
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The next 15 months

Extend SMAN and its dual version to

multiple sources AND multiple receivers

reliability AND security

As well as many other things

distributed storage, matroids, . . .

THANK YOU.
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