The Impact of Network Coding on Mathematics

Eimear Byrne
University College Dublin

DIMACS Workshop on Network Coding: the Next 15 Years Dec 15-17, 2015

Random Network Coding and Designs Over GF (q)

- COST Action IC1104: an EU-funded network
- Funding for workshops, meetings, short research visits
- Chairs: M. Greferath \& M. Pavcević
- S. Blackburn, T. Etzion, A. Garcia-Vasquez, C. Hollanti, J. Rosenthal
- Network involving 28 participant countries
- Final meeting: Network Coding and Designs, Dubronvik, April 4-8, 2016.
- q-designs, subspace codes, rank-metric codes, distributed storage, cryptography, related combinatorial structures.

Some Impacts of Network Coding

Error-Correction in Network Coding

The following seminal papers stimulated a huge volume of work on subspace and rank-metric codes.

- Kötter, Kschischang, "Coding for Erasures and Errors in Random Network Coding," IEEE Trans. Inform. Th. (54), 8, 2008. (cited by: 292 (Scopus), 605 (Google))
- Silva, Kschischang, Kötter, "A Rank-Metric Approach to Error Control in Random Network Coding," IEEE Trans. Inform.
Th. (54), 9, 2008. (cited by 195 (Scopus), 259 (Google))
Motivation: To provide a framework for error correction in networks without much knowledge of the network topology.

Constant Dimension Subspace Codes

A subspace code \mathcal{C} is a set subspaces of \mathbb{F}_{q}^{n}, equipped with the subspace distance:

$$
\begin{aligned}
d_{S}(U, V) & =\operatorname{dim}(U+V)-\operatorname{dim}(U \cap V) \\
& =\operatorname{dim} U+\operatorname{dim} V-2 \operatorname{dim}(U \cap V)
\end{aligned}
$$

- If each codeword has dimension k then \mathcal{C} is a constant dimension code and $d_{S}(U, V)=2(k-\operatorname{dim}(U \cap V))$.
- Channel model: $U \longrightarrow V=\pi(U) \oplus W$.
- $\pi(U)<U$, formed by 'deletions', W formed by 'insertions'.
- Receiver decodes to unique codeword if

$$
2(\operatorname{dim} U-\operatorname{dim} \pi(U)+\operatorname{dim} W)<d_{S}(\mathcal{C})
$$

- Matrix model: $X \in \mathbb{F}_{q}^{m \times n} \longrightarrow Y=A X+B Z$.

Rank-Metric Codes

A rank-metric code \mathcal{C} is a subset of $\mathbb{F}_{q}^{m \times n}$, equipped with the rank distance:

$$
d_{\mathrm{rk}}(F, G)=\operatorname{rk}(F-G)
$$

\mathcal{C} can be lifted to a (constant dimension) subspace code via:

$$
\mathcal{I}(\mathcal{C}):=\{\langle X\rangle=\text { rowspace }([I \mid x]): x \in \mathcal{C}\}
$$

- $d_{S}(\langle X\rangle,\langle Y\rangle)=d_{\mathrm{rk}}(x-y)$
- Matrix model: $X \longrightarrow Y=A X+B Z$.
- Receiver decodes to unique codeword if

$$
2(\mathrm{rk} X-\operatorname{rk} A X+\operatorname{rk} B Z)<d_{\mathrm{rk}}(\mathcal{C})
$$

Optimality

- $\mathcal{G}_{q}(n, k)=$ set of all k-dim'l subspaces of \mathbb{F}_{q}^{n}.
- What is the optimal size $A_{q}(n, d, k)$ of a constant dimension code in $\mathcal{G}_{q}(n, k)$ of minimum distance d ?
- How do we construct such codes?

Example 1

Let $\mathcal{C} \subset \mathcal{G}(n, k)$ such that every t-dimensional subspace is contained in exactly one space of \mathcal{C}. So \mathcal{C} is an $S_{q}(t, k, n)$ Steiner structure. Then $|\mathcal{C}|=A_{q}(n, 2(k-t+1), k)$.

- A Steiner structure is a q-analogue of design theory. Steiner structures yield optimal subspace codes.

Examples of Steiner Structures

Theorem 2

There exists an $S_{2}(2,3,13)$. In fact there exist at least 401 non-isomorphic ones.
Braun, Etzion, Ostergard, Vardy, Wassermann, "Existence of q-Analogs of Steiner Systems," arXiv:1304.1462, 2012.

- This is the first known example of a non-trivial Steiner structure.
- It shows that $A_{2}(13,4,3)=\left[\begin{array}{c}13 \\ 2\end{array}\right]_{2} /\left[\begin{array}{l}3 \\ 2\end{array}\right]_{2}=1,597,245$.
- Found by applying the Kramer-Mesner method.
- Prescribing an automorphism group of size $s=13\left(2^{13}-1\right)=106,483$ reduces from an exact-cover problem of size $1,597,245$ to one of size $\left|S_{2}(2,3,13)\right| / s=1,597,245 / 106,483=15$.

Steiner Structures

Problem 3
Is there an $S_{2}(2,3,13)$ that is part of an infinite family of q-Steiner systems?

Problem 4
Are there any other other examples?
Problem 5
Does there exist an $S_{q}(2,3,7)$? This is the q-analogue of the Fano plane.

- An $S_{2}(2,3,7)$ would have 381 of 11811 planes of $P G\left(6, \mathbb{F}_{2}\right)$.
- Currently known that $A_{2}(7,2,3) \geq 329$ (Braun \& Reichelt).
- The automorphism group of any $S_{2}(2,3,7)$ is small $(2,3$ or 4$)$.
- Computer search is infeasible at this time.

q-Fano plane

- Braun, Kiermaier, Nakić, "On the Automorphism Group of a Binary q-Analog of the Fano Plane," Eur. J. Comb. 51, 2016.
- Kiermaier, Honold, "On Putative q-Analogues of the Fano plane and Related Combinatorial Structures," arXiv: 1504.06688, 2015.
- Etzion, "A New Approach to Examine q-Steiner Systems," arXiv:1507.08503, 2015.
- Thomas, 1987: It is impossible to construct the q-Fano plane as a union of 3 orbits of a Singer group.

q-Analogues of Designs

Definition 6

$\mathcal{D} \subset G_{q}(n, k)$ is a $t-(n, k, \lambda ; q)$ design (over \mathbb{F}_{q}) if every t-dimensional subspace of \mathbb{F}_{q}^{n} is contained in exactly λ subspaces of \mathcal{D}.

Existence: Fazeli, Lovett, Vardy, "Nontrivial t-Designs over Finite Fields Exist for all t ", J. Comb. Thy, A, 127, 2014.

- Introduced by Cameron in 1974.
- Thomas gave an infinite family of $2-(n, 3,7 ; 2)$ designs for $n \equiv \pm 1 \bmod 6$. "Designs Over Finite Fields" Geometriae Dedicata, 24, 1987.
- Suzuki (1992), Abe, Yoshiara (1993), Miyakawa, Munesmasa, Yoshiara (1995), Ito (1996), Braun (2005).
- No 4-designs over \mathbb{F}_{q} are known.

q-Analogues of Designs

- Etzion, Vardy, "On q-Analogues of Steiner Systems and Covering Designs," Adv. Math. Comm. 2011.
- DISCRETAQ - a tool to construct q-analogs of combinatorial designs (Braun, 2005).
- Kiermaier, Pavĉević "Intersection Numbers for Subspace Designs," J. Comb. Designs 23, 11, 2015.
- Braun, Kiermaier, Kohnert, Laue, "Large Sets of Subspace Designs," arXiv: 1411.7181, 2014.

Maximum Rank Distance (MRD) Codes

- Delsarte, "Bilinear Forms over a Finite Field, with Applications to Coding Theory," J. Comb. Thy A, 25, 1978.
- Gabidulin, "Theory of Codes With Maximum Rank Distance," Probl. Inform. Trans., 1, 1985.

Theorem 7
A code $\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ of minimum rank distance d satisfies

$$
q^{m\left(d^{\prime}-1\right)} \leq|\mathcal{C}| \leq q^{m(n-d+1)}
$$

Equality is achieved in either iff $d+d^{\prime}-2=n$. If \mathcal{C} is \mathbb{F}_{q}-linear then $d^{\prime}=d_{\mathrm{rk}}\left(\mathcal{C}^{\perp}\right)$.

- If \mathcal{C} meets the upper bound it is called an MRD code
- If \mathcal{C} is MRD and \mathbb{F}_{q} linear we say it has parameters $[m n, m k, n-k+1]_{q}$.

Delsarte-Gabidulin Codes

Theorem 8 (Delsarte)
Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of $\mathbb{F}_{q^{n}}$ and let $\beta_{1}, \ldots, \beta_{m} \subset \mathbb{F}_{q^{n}}$ be linearly indep. over \mathbb{F}_{q}. The set

$$
\mathcal{C}=\left\{\left(\sum_{\ell=0}^{k-1} \operatorname{tr}\left(\omega_{\ell} \alpha_{i}^{q^{\ell}} \beta_{i}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq m}: \omega_{\ell} \in \mathbb{F}_{q^{n}}\right\}
$$

is an $\mathbb{F}_{q^{n-}}$-linear $[m n, m k, n-k+1]_{q} M R D$ code.
Equivalent form: let $g_{1}, \ldots, g_{m} \subset \mathbb{F}_{q^{n}}$ be be linearly indep. over \mathbb{F}_{q}.
$\mathcal{C}=\left\{\left[x_{1}, \ldots, x_{k}\right]\left[\begin{array}{cccc}g_{1} & g_{2} & \cdots & g_{m} \\ g_{1}^{q} & g_{2}^{q} & \cdots & g_{m}^{q} \\ \vdots & & & \\ g_{1}^{q^{k-1}} & g_{2}^{q^{k-1}} & \cdots & g_{m}^{q^{k-1}}\end{array}\right]: x_{i} \in \mathbb{F}_{q^{n}}\right\} \subset \mathbb{F}_{q^{n}}^{m}$
is an $\mathbb{F}_{q^{n-}}$-linear $[m n, m k, n-k+1]_{q}$ MRD code.

MRD Codes

- If $\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ is $\mathbb{F}_{q^{-}}$-linear then

$$
\mathcal{C}^{\perp}:=\left\{Y \in \mathbb{F}_{q}^{m \times n}: \operatorname{Tr}\left(\mathrm{XY}^{\mathrm{T}}\right)=0 \forall \mathrm{X} \in \mathcal{C}\right\} .
$$

- Mac Williams' duality theorem holds for rank-metric codes.
- Mac Williams' extension theorem does not hold for rank-metric codes.
- \mathcal{C} is MRD iff \mathcal{C}^{\perp} is MRD.
- If \mathcal{C} is MRD then its weight distribution is determined.
- The covering radius of an MRD code is not determined.
- Not all MRD codes are Delsarte-Gabidulin codes.
- $\left[n^{2}, n, n\right]_{q}$ MRD codes are spread-sets in finite geometry.
- Delsarte-Gabidulin MRD codes can be decoded using Gabidulin's algorithm with quadratic complexity.

MRD Codes

There are many papers on decoding rank-metric codes. Recently there has been much activity on the structure of MRD codes.

- Gadouleau, Yan, "Packing and Covering Properties of Rank Metric Codes," IEEE Trans. Inform. Theory, 54 (9) 2008.
- Morrison, "Equivalence for Rank-metric and Matrix Codes and Automorphism Groups of Gabidulin Codes," IEEE Trans. Inform. Theory 60 (11), 2014.
- de la Cruz, Gorla, Lopez, Ravagnani, "Rank Distribution of Delsarte Codes," arXiv: 1510.01008, 2015.
- Nebe, Willems, "On Self-Dual MRD Codes, arXiv: 1505.07237, 2015.
- de la Cruz, Kiermaier, Wassermann, Willems, "Algebraic Structures of MRD Codes," arXiv:1502.02711, 2015.

Quasi-MRD Codes

Definition 9

$\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ is called quasi-MRD (QMRD) if $m \not \backslash \operatorname{dim}(\mathcal{C})$ and

$$
d(\mathcal{C})=n-\left\lceil\frac{\operatorname{dim}(\mathcal{C})}{m}\right\rceil+1
$$

\mathcal{C} is called dually QMRD if \mathcal{C}^{\perp} is also QMRD.
de la Cruz, Gorla, Lopez, Ravagnani, "Rank Distribution of Delsarte Codes," arXiv: 1510.01008, 2015.

- An easy construction is by expurgating an MRD code.
- If \mathcal{C} is QMRD is does not follow that \mathcal{C}^{\perp} is QMRD.
- The weight distribution of a QMRD code is not determined.

MRD Codes as Spaces of Linearized Polynomials

For $m=n$ we construct a Delsarte-Gabidulin MRD code with parameters $\left[n^{2}, n k, n-k+1\right]$ as follows:

$$
G_{n, k}:=\left\{f=f_{0} x+f_{1} x^{q}+\cdots f_{k-1} x^{q^{k-1}}: f_{i} \in \mathbb{F}_{q^{n}}\right\}
$$

- $f=f_{0} x+f_{1} x^{q}+\cdots f_{k-1} x^{q^{k-1}}$ is $\mathbb{F}_{q^{-}}$-linear (in fact is $\mathbb{F}_{q^{n-}}$ linear) and so can be identified with a unique $n \times n$ matrix over \mathbb{F}_{q}.
- Matrix multiplication corresponds to composition $\bmod x^{q}-x$.
- $\operatorname{dim}_{q} \operatorname{ker} f \leq k-1$, so rk $f \geq n-k+1$.

New Classes of MRD Codes

Theorem 10
Let $\nu \in \mathbb{F}_{q^{n}}$ satisfy $\nu^{\frac{q^{n}-1}{q-1}} \neq(-1)^{n k}$. Then

$$
\mathcal{H}_{k}(\nu, h):=\left\{f_{0} x+f_{1} x^{q}+\cdots f_{k-1} x^{q^{k-1}}+\nu f_{0}^{q^{h}} x^{q^{k}}: f_{i} \in \mathbb{F}_{q^{n}}\right\}
$$

is an \mathbb{F}_{q}-linear $\left[n^{2}, n k, n-k+1\right]$ MRD code.
Sheekey, "A New Family of Linear Maximum Rank Distance Codes," arXiv:1504.01581, 2015.
This is the most general known infinite family of MRD codes and includes Delsarte-Gabidulin codes. Other work:

- Horlemann-Trautmann, Marshall, "New Criteria for MRD and Gabidulin Codes and some Rank-Metric Code Constructions," arXiv:1507.08641, 2015.
- Lunardon, Trombetti, Zhou, "Generalized Twisted Gabidulin Codes," arXiv:1507.07855, 2015.

Rank Metric Covering Radius

Definition 11

The rank covering radius of a code $\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ is given by

$$
\begin{aligned}
\rho(\mathcal{C}) & :=\max \left\{\min \left\{d_{\mathrm{rk}}(X, C): C \in \mathcal{C}\right\}: X \in \mathbb{F}_{q}^{m \times n}\right\} \\
& :=\max \left\{d_{\mathrm{rk}}(X, C): X \in \mathbb{F}_{q}^{m \times n}\right\} \\
& :=\max \left\{\mathrm{rk}(X+C): X \in \mathbb{F}_{q}^{m \times n}\right\}
\end{aligned}
$$

- $\mathbb{F}_{q}^{m \times n}, m \times n$ matrices over \mathbb{F}_{q}.
- $\rho(\mathcal{C})$ is the max rank weight over all translates of \mathcal{C} in $\mathbb{F}_{q}^{m \times n}$.

Some Bounds on the Covering Radius

Theorem 12 (B., 2015)
Let $\mathcal{C} \subset \mathcal{C}^{\prime} \subset \mathbb{F}_{q}^{m \times n}$. Then

- $\rho(\mathcal{C}) \geq \min \left\{r: V_{q}(m, n, r)|\mathcal{C}| \geq q^{m n}\right\}$.
- $\rho(\mathcal{C}) \geq$

$$
\max \left\{d_{\mathrm{rk}}(X, C): X \in \mathcal{C}^{\prime}\right\} \geq \min \left\{d_{\mathrm{rk}}(X, C): X \in \mathcal{C}^{\prime} \backslash \mathcal{C}\right\} \geq d_{\mathrm{rk}}\left(\mathcal{C}^{\prime}\right) .
$$

- If $\mathcal{C}, \mathcal{C}^{\prime}$ are \mathbb{F}_{q}-linear, then $\rho(\mathcal{C}) \geq \min \left\{\operatorname{rk}(X): X \in \mathcal{C}^{\prime} \backslash \mathcal{C}\right\}$.
- If \mathcal{C} is \mathbb{F}_{q}-linear then $\rho(\mathcal{C})$ is no greater than the number of non-zero weights of \mathcal{C}^{\perp}.

Example 13

Let $n=r s$ and let $\mathcal{C}=\left\{\sum_{i=0}^{r-1} f_{i} X^{q^{s i}}: f_{i} \in \mathbb{F}_{q^{n}}\right\}$. Then \mathcal{C} has non-zero rank weights $\{s, 2 s, \ldots, r s\}$ over \mathbb{F}_{q}, so that $\rho\left(\mathcal{C}^{\perp}\right) \leq r$.

Maximality

A code $\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ is called maximal if \mathcal{C} is not strictly contained in any code $\mathcal{C}^{\prime} \subset \mathbb{F}_{q}^{m \times n}$ with the same minimum distance.
Theorem 14 (Maximal Codes)
$\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ is maximal $\Leftrightarrow \rho(\mathcal{C}) \leq d_{\mathrm{rk}}(\mathcal{C})-1$.
Clearly any MRD code is maximal.
Example 15 (Gadouleau, 2008)
Let \mathcal{C} be an \mathbb{F}_{q}-linear [$m n, m k, n-k+1$] Gabidulin MRD code.
\mathcal{C} is a maximal code and is contained in an
$\mathbb{F}_{q^{-}}[m n, m(k+1), n-k]$ Delsarte-Gabidulin code \mathcal{C}^{\prime}. Then

$$
n-k=d_{\mathrm{rk}}\left(\mathcal{C}^{\prime}\right) \leq \rho(\mathcal{C}) \leq d_{\mathrm{rk}}(\mathcal{C})-1=n-k
$$

Maximality

Theorem 16 (Sheekey, 2015)
Let $\nu \in \mathbb{F}_{q^{n}}$ satisfy $\nu^{\frac{q^{n}-1}{q-1}} \neq(-1)^{n k}$. Then

$$
\mathcal{H}_{k}(\nu, h):=\left\{f_{0} x+f_{1} x^{q}+\cdots f_{k-1} x^{q^{k-1}}+\nu f_{0}^{q^{h}} x^{q^{k}}: f_{i} \in \mathbb{F}_{q^{n}}\right\}
$$

is an \mathbb{F}_{q}-linear $\left[n^{2}, n k, n-k+1\right]$ MRD code.
Example 17
$\mathcal{C}=\mathcal{H}_{k}(\nu, h)$ is maximal and $\mathcal{H}_{k}(\nu, h) \subset \mathcal{H}_{k+1}\left(0, h^{\prime}\right)=\mathcal{C}^{\prime}$.
Therefore

$$
n-k=d_{\mathrm{rk}}\left(\mathcal{C}^{\prime}\right) \leq \rho(\mathcal{C}) \leq d_{\mathrm{rk}}\left(\mathcal{C}^{\prime}\right)-1=n-k
$$

- The current known families of MRD code \mathcal{C} all have covering radius $d_{\mathrm{rk}}(\mathcal{C})-1$.
- There are sporadic examples of MRD codes \mathcal{C} such that $\rho(\mathcal{C})<d_{\mathrm{rk}}(\mathcal{C})-1$.

Maximality of dually QMRD Codes

Theorem 18
Let $\mathcal{C} \subset \mathbb{F}_{q}^{m \times n}$ be dually $Q M R D$.

$$
\rho(\mathcal{C}) \leq \sigma^{*}(\mathcal{C})=n-d_{\mathrm{rk}}\left(\mathcal{C}^{\perp}\right)+1=d_{\mathrm{rk}}(\mathcal{C})
$$

- Then $\rho(\mathcal{C})<d_{\mathrm{rk}}(\mathcal{C})$ if and only if \mathcal{C} is maximal.
- If \mathcal{C} is maximal then in particular it cannot be embedded in an [mn, mk, $\left.d_{\mathrm{rk}}(\mathcal{C})\right] M R D$ code.

Example 19

Let \mathcal{C} be the \mathbb{F}_{2}-linear $[16,3,4]$ code generated by

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] .
$$

It can be checked that $\rho(\mathcal{C})=3<d_{\mathrm{rk}}(\mathcal{C})=4$, so \mathcal{C} is maximal.

Broadcasting With Coded-Side Information

- Index Coding
- Broadcast Relay Networks
- Coded Caching
- Network Coding

Broadcast with Coded-Side Information

- $X \in \mathbb{F}_{q}^{n \times t}$ is the raw data held by the sender for m users.
- User i wants the packet $R_{i} X \in \mathbb{F}_{q}^{t}$.
- User i has side information $\left(V^{(i)}, V^{(i)} X\right) \in \mathbb{F}_{q}^{d^{\prime} \times n} \times \mathbb{F}_{q}^{d_{i} \times t}$.
- The sender, after receiving each request R_{i}, transmits $Y=L X \in \mathbb{F}_{q}^{N \times t}$ for some $L \in \mathbb{F}_{q}^{N \times n}, N<n$.
- Each user decodes $R_{i} X$ by solving a linear system of equations in the received Y and its side-information.

Objective 1

The sender aims to find an encoding $L X$ that minimizes N such that the demands of all users satisfied.
Dai, Shum, Sung, "Data Dissemination with Side Information and Feedback", IEEE Trans. Wireless Comm. (13) 9, 2014.

A Class of Codes for Coded-Caching

Now we consider codes of the form $\mathcal{C}=\mathcal{C}^{(1)} \oplus \cdots \oplus \mathcal{C}^{(m)}$ for some $\mathcal{C}^{(i)}<\mathbb{F}_{q}^{n}$ of dimension d_{i}. So \mathcal{C} has the form:

$$
\mathcal{C}=\left\{\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{m}
\end{array}\right]: X_{i} \in \mathcal{C}^{(i)}<\mathbb{F}_{q}^{n}\right\} \subset \mathbb{F}_{q}^{m \times n} .
$$

- \mathcal{C} with low covering radius are useful for coded-caching schemes.
- $\mathcal{C}^{\perp}=\mathcal{C}^{(1)^{\perp}} \oplus \cdots \oplus \mathcal{C}^{(m)^{\perp}}$.

A Class of Codes for Coded-Caching

$$
\begin{aligned}
& \text { Theorem } 20 \text { (B., Calderini, 2015) } \\
& \begin{aligned}
& \text { Let } \mathcal{C}=\oplus_{i \in[m]} \mathcal{C}^{(i)} . \\
& \quad \rho(\mathcal{C}) \leq \sigma^{*}(\mathcal{C})=\operatorname{maxk}\left(\mathcal{C}^{\perp}\right) \\
& \quad=\max \left\{\operatorname{dim}\left\langle b_{1}, \ldots, b_{m}\right\rangle: b_{i} \in \mathcal{C}^{i \perp}\right\} . \\
&-\rho(\mathcal{C}) \leq \max \left\{n-d_{i}: i \in[m]\right\}, \text { if }\left|\left\{\mathcal{C}^{(i)}: i \in[m]\right\}\right| \leq q . \\
&-\rho(\mathcal{C}) \leq \min \left\{n-d_{i}: i \in[m]\right\}+\ell-1 \text { if } \\
&\left|\left\{\mathcal{C}^{(i)}: i \in[m]\right\}\right| \leq q^{\ell t} /\left(q^{t}-1\right), t>1 .
\end{aligned}
\end{aligned}
$$

Example 21

Let $\mathcal{C}=\mathcal{C}^{(1)} \oplus \cdots \oplus \mathcal{C}^{(m)}$, each $\mathcal{C}^{(i)}<\mathbb{F}_{q}^{n}$ of dimension d. Suppose that each $\mathcal{C}^{(i)}$ is systematic on the same set of coordinates, say $\{1,2, \ldots, d\}$. Then given any $x \in \mathbb{F}_{q}^{m \times n}$, there exists $y \in \mathcal{C}$ such that $x-y=\left[0_{d} \mid z\right]$. So $\rho(\mathcal{C}) \leq n-d$.

Broadcast With Coded-Side Information

1 Dai, Shum, Sung, "Data Dissemination with Side Information and Feedback", IEEE Trans. Wireless Comm. (13) 9, 2014.
2 Shanmugam, Dimakis, Langberg, "Graph Theory versus Minimum Rank for Index Coding," arXiv:1402.3898

Results of [2] can be extended based on setting in [1] (joint with Calderini, 2015).

- clique: $C \subset[m]$ such that $\left\{v: R_{i} \in\langle v\rangle+\mathcal{C}^{i} ; \forall i \in C\right\} \neq \emptyset$
- clique/local clique/fractional local clique covering number
- partitioned multicast/fractional partition multicast number
- partitioned local clique covering number
- there exist achievable schemes based on these

Other Impacts on Mathematics

- Semi/quasifields
- Linearized Polynomials
- Graph theory
- Matroids
- Lattices

The End

Thanks for your attention!

