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Random Network Coding and Designs Over GF (q)

I COST Action IC1104: an EU-funded network

I Funding for workshops, meetings, short research visits

I Chairs: M. Greferath & M. Pavcević

I S. Blackburn, T. Etzion, A. Garcia-Vasquez, C. Hollanti, J.
Rosenthal

I Network involving 28 participant countries

I Final meeting: Network Coding and Designs, Dubronvik, April
4-8, 2016.

I q-designs, subspace codes, rank-metric codes, distributed
storage, cryptography, related combinatorial structures.



Some Impacts of Network Coding



Error-Correction in Network Coding

The following seminal papers stimulated a huge volume of work on
subspace and rank-metric codes.

I Kötter, Kschischang, “Coding for Erasures and Errors in
Random Network Coding,” IEEE Trans. Inform. Th. (54), 8,
2008. (cited by: 292 (Scopus), 605 (Google))

I Silva, Kschischang, Kötter, “A Rank-Metric Approach to Error
Control in Random Network Coding,” IEEE Trans. Inform.
Th. (54), 9, 2008. (cited by 195 (Scopus), 259 (Google))

Motivation: To provide a framework for error correction in
networks without much knowledge of the network topology.



Constant Dimension Subspace Codes
A subspace code C is a set subspaces of Fn

q, equipped with the
subspace distance:

dS(U,V ) = dim(U + V )− dim(U ∩ V )

= dimU + dimV − 2dim(U ∩ V ).

I If each codeword has dimension k then C is a constant
dimension code and dS(U,V ) = 2(k − dim(U ∩ V )).

I Channel model: U −→ V = π(U)⊕W .

I π(U) < U, formed by ‘deletions’, W formed by ‘insertions’.

I Receiver decodes to unique codeword if

2(dimU − dimπ(U) + dimW ) < dS(C).

I Matrix model: X ∈ Fm×n
q −→ Y = AX + BZ .



Rank-Metric Codes

A rank-metric code C is a subset of Fm×n
q , equipped with the rank

distance:

drk(F ,G ) = rk(F − G )

C can be lifted to a (constant dimension) subspace code via:

I(C) := {〈X 〉 = rowspace([I |x ]) : x ∈ C}.

I dS(〈X 〉, 〈Y 〉) = drk(x − y)

I Matrix model: X −→ Y = AX + BZ .

I Receiver decodes to unique codeword if

2(rkX − rkAX + rkBZ ) < drk(C).



Optimality

I Gq(n, k) = set of all k-dim’l subspaces of Fn
q.

I What is the optimal size Aq(n, d , k) of a constant dimension
code in Gq(n, k) of minimum distance d?

I How do we construct such codes?

Example 1

Let C ⊂ G(n, k) such that every t-dimensional subspace is
contained in exactly one space of C. So C is an Sq(t, k , n) Steiner
structure. Then |C| = Aq(n, 2(k − t + 1), k).

I A Steiner structure is a q-analogue of design theory. Steiner
structures yield optimal subspace codes.



Examples of Steiner Structures

Theorem 2
There exists an S2(2, 3, 13). In fact there exist at least 401
non-isomorphic ones.

Braun, Etzion, Ostergard, Vardy, Wassermann, “Existence of
q-Analogs of Steiner Systems,” arXiv:1304.1462, 2012.

I This is the first known example of a non-trivial Steiner
structure.

I It shows that A2(13, 4, 3) =

[
13
2

]
2

/

[
3
2

]
2

= 1, 597, 245.

I Found by applying the Kramer-Mesner method.

I Prescribing an automorphism group of size
s = 13(213 − 1) = 106, 483 reduces from an exact-cover
problem of size 1,597,245 to one of size
|S2(2, 3, 13)|/s = 1, 597, 245/106, 483 = 15.



Steiner Structures

Problem 3
Is there an S2(2, 3, 13) that is part of an infinite family of q-Steiner
systems?

Problem 4
Are there any other other examples?

Problem 5
Does there exist an Sq(2, 3, 7)? This is the q-analogue of the Fano
plane.

I An S2(2, 3, 7) would have 381 of 11811 planes of PG (6,F2).

I Currently known that A2(7, 2, 3) ≥ 329 (Braun & Reichelt).

I The automorphism group of any S2(2, 3, 7) is small (2,3 or 4).

I Computer search is infeasible at this time.



q-Fano plane

I Braun, Kiermaier, Nakić, “On the Automorphism Group of a
Binary q-Analog of the Fano Plane,” Eur. J. Comb. 51, 2016.

I Kiermaier, Honold, “On Putative q-Analogues of the Fano
plane and Related Combinatorial Structures,” arXiv:
1504.06688, 2015.

I Etzion, “A New Approach to Examine q-Steiner Systems,”
arXiv:1507.08503, 2015.

I Thomas, 1987: It is impossible to construct the q-Fano plane
as a union of 3 orbits of a Singer group.



q-Analogues of Designs

Definition 6
D ⊂ Gq(n, k) is a t − (n, k , λ; q) design (over Fq) if every
t-dimensional subspace of Fn

q is contained in exactly λ subspaces
of D.

Existence: Fazeli, Lovett, Vardy, “Nontrivial t-Designs over Finite
Fields Exist for all t”, J. Comb. Thy, A, 127, 2014.

I Introduced by Cameron in 1974.

I Thomas gave an infinite family of 2− (n, 3, 7; 2) designs for
n ≡ ±1 mod 6. “Designs Over Finite Fields” Geometriae
Dedicata, 24, 1987.

I Suzuki (1992), Abe, Yoshiara (1993), Miyakawa, Munesmasa,
Yoshiara (1995), Ito (1996), Braun (2005).

I No 4-designs over Fq are known.



q-Analogues of Designs

I Etzion, Vardy, “On q-Analogues of Steiner Systems and
Covering Designs,” Adv. Math. Comm. 2011.

I DISCRETAQ - a tool to construct q-analogs of combinatorial
designs (Braun, 2005).

I Kiermaier, Pavĉević “Intersection Numbers for Subspace
Designs,” J. Comb. Designs 23, 11, 2015.

I Braun, Kiermaier, Kohnert, Laue, “Large Sets of Subspace
Designs,” arXiv: 1411.7181, 2014.



Maximum Rank Distance (MRD) Codes

I Delsarte, “Bilinear Forms over a Finite Field, with
Applications to Coding Theory,” J. Comb. Thy A, 25, 1978.

I Gabidulin, “Theory of Codes With Maximum Rank Distance,”
Probl. Inform. Trans., 1, 1985.

Theorem 7
A code C ⊂ Fm×n

q of minimum rank distance d satisfies

qm(d ′−1) ≤ |C| ≤ qm(n−d+1).

Equality is achieved in either iff d + d ′ − 2 = n. If C is Fq-linear
then d ′ = drk(C⊥).

I If C meets the upper bound it is called an MRD code

I If C is MRD and Fq linear we say it has parameters
[mn,mk , n − k + 1]q.



Delsarte-Gabidulin Codes

Theorem 8 (Delsarte)

Let α1, ..., αn be a basis of Fqn and let β1, ..., βm ⊂ Fqn be linearly
indep. over Fq. The set

C =


(

k−1∑
`=0

tr (ω`α
q`

i βi )

)
1≤i≤n,1≤j≤m

: ω` ∈ Fqn


is an Fqn -linear [mn,mk , n − k + 1]q MRD code.

Equivalent form: let g1, ..., gm ⊂ Fqn be be linearly indep. over Fq.

C =

[x1, ..., xk ]


g1 g2 · · · gm
gq
1 gq

2 · · · gq
m

...

gqk−1

1 gqk−1

2 · · · gqk−1

m

 : xi ∈ Fqn

 ⊂ Fm
qn

is an Fqn -linear [mn,mk , n − k + 1]q MRD code.



MRD Codes

I If C ⊂ Fm×n
q is Fq-linear then

C⊥ := {Y ∈ Fm×n
q : Tr(XYT) = 0 ∀ X ∈ C}.

I Mac Williams’ duality theorem holds for rank-metric codes.

I Mac Williams’ extension theorem does not hold for
rank-metric codes.

I C is MRD iff C⊥ is MRD.

I If C is MRD then its weight distribution is determined.

I The covering radius of an MRD code is not determined.

I Not all MRD codes are Delsarte-Gabidulin codes.

I [n2, n, n]q MRD codes are spread-sets in finite geometry.

I Delsarte-Gabidulin MRD codes can be decoded using
Gabidulin’s algorithm with quadratic complexity.



MRD Codes

There are many papers on decoding rank-metric codes. Recently
there has been much activity on the structure of MRD codes.

I Gadouleau, Yan, “Packing and Covering Properties of Rank
Metric Codes,” IEEE Trans. Inform. Theory, 54 (9) 2008.

I Morrison, “Equivalence for Rank-metric and Matrix Codes and
Automorphism Groups of Gabidulin Codes,” IEEE Trans.
Inform. Theory 60 (11), 2014.

I de la Cruz, Gorla, Lopez, Ravagnani, “Rank Distribution of
Delsarte Codes,” arXiv: 1510.01008, 2015.

I Nebe, Willems, “On Self-Dual MRD Codes, arXiv:
1505.07237, 2015.

I de la Cruz, Kiermaier, Wassermann, Willems, “Algebraic
Structures of MRD Codes,” arXiv:1502.02711, 2015.



Quasi-MRD Codes

Definition 9
C ⊂ Fm×n

q is called quasi-MRD (QMRD) if m 6 |dim(C) and

d(C) = n −
⌈
dim(C)

m

⌉
+ 1.

C is called dually QMRD if C⊥ is also QMRD.

de la Cruz, Gorla, Lopez, Ravagnani, “Rank Distribution of
Delsarte Codes,” arXiv: 1510.01008, 2015.

I An easy construction is by expurgating an MRD code.

I If C is QMRD is does not follow that C⊥ is QMRD.

I The weight distribution of a QMRD code is not determined.



MRD Codes as Spaces of Linearized Polynomials

For m = n we construct a Delsarte-Gabidulin MRD code with
parameters [n2, nk, n − k + 1] as follows:

Gn,k := {f = f0x + f1x
q + · · · fk−1xq

k−1
: fi ∈ Fqn}

I f = f0x + f1x
q + · · · fk−1xq

k−1
is Fq-linear (in fact is

Fqn -linear) and so can be identified with a unique n × n
matrix over Fq.

I Matrix multiplication corresponds to composition
mod xq − x .

I dimq ker f ≤ k − 1, so rk f ≥ n − k + 1.



New Classes of MRD Codes

Theorem 10

Let ν ∈ Fqn satisfy ν
qn−1
q−1 6= (−1)nk . Then

Hk(ν, h) := {f0x + f1x
q + · · · fk−1xq

k−1
+ νf q

h

0 xq
k

: fi ∈ Fqn}

is an Fq-linear [n2, nk, n − k + 1] MRD code.

Sheekey, “A New Family of Linear Maximum Rank Distance
Codes,” arXiv:1504.01581, 2015.
This is the most general known infinite family of MRD codes and
includes Delsarte-Gabidulin codes. Other work:

I Horlemann-Trautmann, Marshall, “New Criteria for MRD and
Gabidulin Codes and some Rank-Metric Code Constructions,”
arXiv:1507.08641, 2015.

I Lunardon, Trombetti, Zhou, “Generalized Twisted Gabidulin
Codes,” arXiv:1507.07855, 2015.



Rank Metric Covering Radius

Definition 11
The rank covering radius of a code C ⊂ Fm×n

q is given by

ρ(C) := max{min{drk(X ,C ) : C ∈ C} : X ∈ Fm×n
q }

:= max{drk(X ,C ) : X ∈ Fm×n
q }

:= max{rk(X + C ) : X ∈ Fm×n
q }

I Fm×n
q ,m × n matrices over Fq.

I ρ(C) is the max rank weight over all translates of C in Fm×n
q .



Some Bounds on the Covering Radius

Theorem 12 (B., 2015)

Let C ⊂ C′ ⊂ Fm×n
q . Then

I ρ(C) ≥ min{r : Vq(m, n, r)|C| ≥ qmn}.
I ρ(C) ≥

max{drk(X ,C ) : X ∈ C ′} ≥ min{drk(X ,C ) : X ∈ C′\C} ≥ drk(C′).

I If C, C′ are Fq-linear, then ρ(C) ≥ min{rk(X ) : X ∈ C′\C}.
I If C is Fq-linear then ρ(C) is no greater than the number of

non-zero weights of C⊥.

Example 13

Let n = rs and let C = {
∑r−1

i=0 fix
qsi : fi ∈ Fqn}. Then C has

non-zero rank weights {s, 2s, ..., rs} over Fq, so that ρ(C⊥) ≤ r .



Maximality

A code C ⊂ Fm×n
q is called maximal if C is not strictly contained in

any code C′ ⊂ Fm×n
q with the same minimum distance.

Theorem 14 (Maximal Codes)

C ⊂ Fm×n
q is maximal ⇔ ρ(C) ≤ drk(C)− 1.

Clearly any MRD code is maximal.

Example 15 (Gadouleau, 2008)

Let C be an Fq-linear [mn,mk , n − k + 1] Gabidulin MRD code.
C is a maximal code and is contained in an
Fq-[mn,m(k + 1), n − k] Delsarte-Gabidulin code C′. Then

n − k = drk(C′) ≤ ρ(C) ≤ drk(C)− 1 = n − k .



Maximality

Theorem 16 (Sheekey, 2015)

Let ν ∈ Fqn satisfy ν
qn−1
q−1 6= (−1)nk . Then

Hk(ν, h) := {f0x + f1x
q + · · · fk−1xq

k−1
+ νf q

h

0 xq
k

: fi ∈ Fqn}

is an Fq-linear [n2, nk, n − k + 1] MRD code.

Example 17

C = Hk(ν, h) is maximal and Hk(ν, h) ⊂ Hk+1(0, h′) = C′.
Therefore

n − k = drk(C′) ≤ ρ(C) ≤ drk(C′)− 1 = n − k.

I The current known families of MRD code C all have covering
radius drk(C)− 1.

I There are sporadic examples of MRD codes C such that
ρ(C) < drk(C)− 1.



Maximality of dually QMRD Codes

Theorem 18
Let C ⊂ Fm×n

q be dually QMRD.

I

ρ(C) ≤ σ∗(C) = n − drk(C⊥) + 1 = drk(C).

I Then ρ(C) < drk(C) if and only if C is maximal.

I If C is maximal then in particular it cannot be embedded in an
[mn,mk , drk(C)] MRD code.

Example 19

Let C be the F2-linear [16, 3, 4] code generated by
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,


0 1 0 0
1 0 1 1
0 0 0 1
1 1 0 0

 ,


0 0 1 0
0 1 1 1
1 0 1 0
1 0 0 1

 .
It can be checked that ρ(C) = 3 < drk(C) = 4, so C is maximal.



Broadcasting With Coded-Side Information

I Index Coding

I Broadcast Relay Networks

I Coded Caching

I Network Coding

Sx1 + x2 + x3 + x4

R4

has x1, x2, x3

requests x4 R3

has x1, x2, x4

requests x3

R1

has x2, x3, x4

requests x1 R2

has x1, x3, x4

requests x2



Broadcast with Coded-Side Information

I X ∈ Fn×t
q is the raw data held by the sender for m users.

I User i wants the packet RiX ∈ Ft
q.

I User i has side information (V (i),V (i)X ) ∈ Fdi×n
q × Fdi×t

q .

I The sender, after receiving each request Ri , transmits
Y = LX ∈ FN×t

q for some L ∈ FN×n
q , N < n.

I Each user decodes RiX by solving a linear system of equations
in the received Y and its side-information.

Objective 1

The sender aims to find an encoding LX that minimizes N such
that the demands of all users satisfied.

Dai, Shum, Sung, “Data Dissemination with Side Information and
Feedback”, IEEE Trans. Wireless Comm. (13) 9, 2014.



A Class of Codes for Coded-Caching

Now we consider codes of the form C = C(1) ⊕ · · · ⊕ C(m) for some
C(i) < Fn

q of dimension di . So C has the form:

C =




X1

X2
...

Xm

 : Xi ∈ C(i) < Fn
q

 ⊂ Fm×n
q .

I C with low covering radius are useful for coded-caching
schemes.

I C⊥ = C(1)⊥ ⊕ · · · ⊕ C(m)⊥.



A Class of Codes for Coded-Caching

Theorem 20 (B., Calderini, 2015)

Let C = ⊕i∈[m]C(i).
I ρ(C) ≤ σ∗(C) = max rk(C⊥)

= max{dim〈b1, ..., bm〉 : bi ∈ C i
⊥}.

I ρ(C) ≤ max{n − di : i ∈ [m]}, if |{C(i) : i ∈ [m]}| ≤ q.

I ρ(C) ≤ min{n − di : i ∈ [m]}+ `− 1 if
|{C(i) : i ∈ [m]}| ≤ q`t/(qt − 1), t > 1.

Example 21

Let C = C(1) ⊕ · · · ⊕ C(m), each C(i) < Fn
q of dimension d . Suppose

that each C(i) is systematic on the same set of coordinates, say
{1, 2, ..., d}. Then given any x ∈ Fm×n

q , there exists y ∈ C such
that x − y = [0d |z ]. So ρ(C) ≤ n − d .



Broadcast With Coded-Side Information

1 Dai, Shum, Sung, “Data Dissemination with Side Information
and Feedback”, IEEE Trans. Wireless Comm. (13) 9, 2014.

2 Shanmugam, Dimakis, Langberg, “Graph Theory versus
Minimum Rank for Index Coding,” arXiv:1402.3898

Results of [2] can be extended based on setting in [1] (joint with
Calderini, 2015).

I clique: C ⊂ [m] such that {v : Ri ∈ 〈v〉+ C i ;∀i ∈ C} 6= ∅
I clique/local clique/fractional local clique covering number

I partitioned multicast/fractional partition multicast number

I partitioned local clique covering number

I there exist achievable schemes based on these



Other Impacts on Mathematics

I Semi/quasifields

I Linearized Polynomials

I Graph theory

I Matroids

I Lattices



The End

Thanks for your attention!


