Constructions of Codes with the Locality Property

Alexander Barg
University of Maryland

DIMACS Workshop "Network Coding: The Next 15 years"

Acknowledgment

Based on joint works with
Itzhak Tamo
Alexey Frolov
Serge Vlăduţ
Sreechakra Goparaju
Robert Calderbank

Locally recoverable codes

The code $\mathcal{C} \subset \mathbb{F}^{n}$ is locally recoverable with locality r if every symbol can be recovered by accessing some other r symbols in the encoding (recovery set of coordinate i)

Table of codewords

(n, k, r) LRC code

Definition (LRC codes)

Code \mathcal{C} has locality r if for every $i \in[n]$ there exists a subset $J_{i} \subset[n] \backslash i,\left|J_{i}\right| \leq r$ and a function ϕ_{i} such that for every codeword $c \in \mathcal{C}$

$$
c_{i}=\phi_{i}\left(\left\{c_{j}, j \in J_{i}\right\}\right)
$$

J. Han and L. Lastras-Montano, ISIT 2007;
C. Huang, M. Chen, and J. Li, Symp. Networks App. 2007;
F. Oggier and A. Datta '10;
P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, IEEE Trans. Inf. Theory, Nov. 2012.

Linear index codes are duals of linear DS codes on graphs
(Mazumdar '14; Shanmugam-Dimakis '14)

(n, k, r) LRC code

Definition (LRC codes)
Code \mathcal{C} has locality r if for every $i \in[n]$ there exists a subset $J_{i} \subset[n] \backslash i,\left|J_{i}\right| \leq r$ and a function ϕ_{i} such that for every codeword $c \in \mathcal{C}$

$$
c_{i}=\phi_{i}\left(\left\{c_{j}, j \in J_{i}\right\}\right)
$$

Examples:

Repetition codes, Single parity-check codes [$n, r, n-r+1$] RS code

Early constructions:

Prasanth, Kamath, Lalitha, Kumar, ISIT 2012
Silberstein, Rawat, Koyluoglu Vishwanath, ISIT 2013
Tamo, Papailiopoulos, Dimakis, ISIT 2013

Outline

- RS-like LRC codes
- Bounds on LRC codes
- LRC codes on curves
- Cyclic LRC codes

RS codes and Evaluation codes

Given a polynomial $f \in \mathbb{F}_{q}[x]$ and a set $A=\left\{P_{1}, \ldots, P_{n}\right\} \subset \mathbb{F}_{q}$ define the map

$$
e v_{A}: f \mapsto\left(f\left(P_{i}\right), i=1, \ldots, n\right)
$$

Example: Let $q=8, f(x)=1+\alpha x+\alpha x^{2}$

$$
f(x) \mapsto\left(1, \alpha^{4}, \alpha^{6}, \alpha^{4}, \alpha, \alpha, \alpha^{6}\right)
$$

Evaluation code $\mathcal{C}(A)$
Let $V=\left\{f \in \mathbb{F}_{q}[x]\right\}$ be a set of polynomials, $\operatorname{dim}(V)=k$

$$
\begin{aligned}
\mathcal{C}: V & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto
\end{aligned} V_{A}(f)=\left(f\left(P_{i}\right), i=1, \ldots, n\right)
$$

Reed-Solomon codes

Reed-Solomon codes

Reed-Solomon codes

Evaluation codes with locality

Construction of (n, k, r) LRC codes: Example

Parameters: $n=9, k=4, r=2, q=13$;
Set of points: $A=\left\{P_{1}, \ldots, P_{9}\right\} \subset \mathbb{F}_{13}$

$$
\mathcal{A}=\left\{A_{1}=(1,3,9), A_{2}=(2,6,5), A_{3}=(4,12,10)\right\}
$$

Set of functions: $\mathcal{P}=\left\{f_{a}(x)=a_{0}+a_{1} x+a_{3} x^{3}+a_{4} x^{4}\right\}$
Code construction:

$$
e v_{A}: f_{a} \mapsto\left(f\left(P_{i}\right), i=1, \ldots 9\right)
$$

E.g., $a=(1111)$ then $f_{a}(x)=1+x+x^{3}+x^{4}$

$$
\begin{gathered}
c:=e v_{A}\left(f_{a}\right)=(\underbrace{4,8,7}_{A_{1}}|\underbrace{1,11,2}_{A_{2}}| \underbrace{0,0,0}_{A_{3}}) \\
\left.f_{a}(x)\right|_{A_{1}}=a_{0}+a_{3}+\left(a_{1}+a_{4}\right) x=2+2 x \\
\left.f_{a}(x)\right|_{A_{2}}=a_{0}+8 a_{3}+\left(a_{1}+8 a_{4}\right) x
\end{gathered}
$$

Construction of (n, k, r) LRC codes

$$
\begin{gathered}
A=\left(P_{1}, \ldots, P_{n}\right) \subset \mathbb{F}_{q} \\
A=A_{1} \cup A_{2} \cup \cdots \cup A_{\frac{n}{r+1}}
\end{gathered}
$$

Basis of functions: Take $g(x)$ constant on $A_{i}, i=1, \ldots, \frac{n}{r+1}\left(\right.$ above $\left.g(x)=x^{3}\right)$

$$
V=\left\langle g(x)^{j} x^{i}, i=0, \ldots, r-1 ; j=0, \ldots, \frac{k}{r}-1\right\rangle ; \operatorname{dim}(V)=k
$$

$$
V=\left\{f_{a}(x)=\sum_{i=0}^{r-1} \sum_{j=0}^{\frac{k}{r}-1} a_{i j} g(x)^{j} x^{i}\right\}
$$

We obtain a family of optimal r-LRC codes

Erasure recovery by polynomial interpolation over r points.
I. Tamo and A.B., IEEE Trans. Inf. Theory, Aug. 2014.

Extensions

- Codes with multiple disjoint recovery sets for every coordinate
- Codes that recover locally from $\rho \geq 2$ erasures: The local codes are $[r+\rho-1, r, \rho]$ MDS
- Systematic encoding

Finite-length bounds

Let $\mathcal{C} \subset \mathbb{F}_{q}^{n}$ be an r-LRC code, $|\mathcal{C}|=q^{k}$, distance d

$$
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2
$$

(P. Gopalan e.a. 2012)

$$
k \leq \min _{s \geq 1}\left\{s r+k_{q}(n-s(r+1), d)\right\}
$$

(V. Cadambe and A. Mazumdar, 2013-15)

Bounds for multiple recovery sets (work with I. Tamo, 2014)

Asymptotic bounds

$$
\begin{gathered}
R_{q}(r, \delta)>0, \quad 0 \leq \delta<(q-1) / q \\
R_{q}(r, 0)=\frac{r}{r+1}, \quad R_{q}(r, \delta)=0, \frac{q-1}{q} \leq \delta \leq 1
\end{gathered}
$$

Geometric view of LRC codes

$$
\begin{gathered}
A=\{1, \ldots, 9\} \subset \mathbb{F}_{13} \\
A=A_{1} \cup A_{2} \cup A_{3} \\
A_{1}=(1,3,9) \\
A_{2}=(2,6,5) \\
A_{3}=(4,12,10)
\end{gathered}
$$

$$
\begin{aligned}
g: A & \rightarrow \mathbb{F}_{13} \\
x & \mapsto x^{3}-1
\end{aligned}
$$

$$
\begin{gathered}
g: \mathbb{F}_{13} \rightarrow\{0,7,8\} \subset \mathbb{F}_{13} \\
\left|g^{-1}(y)\right|=r+1
\end{gathered}
$$

LRC codes on curves

Consider the set of pairs $(x, y) \in \mathbb{F}_{9}$ that satisfy the equation $x^{3}+x=y^{4}$

Affine points of the Hermitian curve \mathcal{X} over $\mathbb{F}_{9} ; \alpha^{2}=\alpha+1$

Hermitian codes

$$
\begin{array}{rll}
g: \mathcal{X} & \rightarrow & \mathbb{P}^{1} \\
(x, y) & \mapsto & y
\end{array}
$$

Space of functions $V:=\left\langle 1, y, y^{2}, x, x y, x y^{2}\right\rangle$
$A=\left\{\right.$ Affine points of the Hermitian curve over $\left.\mathbb{F}_{9}\right\} ; n=27, k=6$

$$
\mathcal{C}: V \rightarrow \mathbb{F}_{9}^{n}
$$

E.g., message $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right)$

$$
F(x, y)=1+\alpha y+\alpha^{2} y^{2}+\alpha^{3} x+\alpha^{4} x y+\alpha^{5} x y^{2}
$$

$$
F(0,0)=1 \text { etc. }
$$

LRC codes on curves

α^{7}			α		α^{7}	α^{5}		0	
α^{6}	α^{2}								
α^{5}			α^{6}	α^{4}	α^{2}		0		
α^{4}		α^{7}		α^{3}	α^{5}	α^{5}			
$\times \alpha^{3}$		α^{3}		α^{7}		α		α	
α^{2}	α^{3}								
α		0		0		0		0	
1			1		α^{6}	α^{4}		0	
0	1								
	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	α^{7}

Hermitian LRC codes

Let $P=(\alpha, 1)$ be the erased location.

Local recovery with Hermitian codes

α^{7}			α		α^{7}	α^{5}		0		
α^{6}	α^{2}									
α^{5}			α^{6}		α^{4}		α^{2}		0	
α^{4}		α^{7}		α^{3}	α^{5}	α^{5}				
x	α^{3}		α^{3}		α^{7}		α		α	
α^{2}	α^{3}									
α		$?$		0		0		0		
1			1		α^{6}	α^{4}		0		
0	1									
	0	1	α	α^{2}	α^{3}	α^{4}	α^{5}	α^{6}	α^{7}	

Let $P=(\alpha, 1)$ be the erased location. Recovery set $I_{P}=\left\{\left(\alpha^{4}, 1\right),\left(\alpha^{3}, 1\right)\right\}$ Find $f(x): f\left(\alpha^{4}\right)=\alpha^{7}, f\left(\alpha^{3}\right)=\alpha^{3}$

$$
\begin{gathered}
\Rightarrow f(x)=\alpha x-\alpha^{2} \\
f(\alpha)=0=F(P)
\end{gathered}
$$

Hermitian codes

$q=q_{0}^{2}, q_{0}$ prime power

$$
\mathcal{X}: x^{q_{0}}+x=y^{q_{0}+1}
$$

\mathcal{X} has $q_{0}^{3}=q^{3 / 2}$ points in \mathbb{F}_{q}
Let $g: \mathcal{X} \rightarrow \mathcal{Y}=\mathbb{P}^{1}, g(P)=g(x, y):=y$

We obtain a family of q-ary codes of length $n=q_{0}^{3}$,

$$
k=(t+1)\left(q_{0}-1\right), d \geq n-t q_{0}-\left(q_{0}-2\right)\left(q_{0}+1\right)
$$

with locality $r=q_{0}-1$.
It is also possible to take $g(P)=x$ (projection on x); we obtain LRC codes with locality q_{0}

General construction

Map of curves

X, Y smooth projective absolutely irreducible curves over \mathfrak{k}

$$
g: X \rightarrow Y
$$

rational separable map of degree $r+1$

Lift the points of Y
$S=\left\{P_{1}, \ldots, P_{s}\right\} \subset Y(\mathbb{k})$. Partition of points:

$$
A:=g^{-1}(S)=\left\{P_{i j}, i=0, \ldots, r, j=1, \ldots, s\right\} \subseteq X(\mathbb{k})
$$

such that $g\left(P_{i j}\right)=P_{j}$ for all i, j

Basis of the function space:
$Q_{\infty}=\pi^{-1}(\infty)$, where $\pi: Y \rightarrow \mathbb{P}_{\mathbb{k}}^{1}$
$\left\{f_{1}, \ldots, f_{m}\right\}$ span $L\left(t Q_{\infty}\right), t \geq 1$

$$
\left\{f_{j} x^{i}, i=0, \ldots, r-1 ; j=1, \ldots, m\right\}
$$

Construct LRC codes

Asymptotically good sequences of codes

Let $q=q_{0}^{2}$, where q_{0} is a prime power. Take Garcia-Stichtenoth towers of curves:

$$
\begin{gathered}
x_{0}:=1 ; X_{1}:=\mathbb{P}^{1}, \mathbb{k}_{k}\left(X_{1}\right)=\mathbb{k}_{k}\left(x_{1}\right) ; \\
X_{l}: z_{l}^{q_{0}}+z_{l}=x_{l-1}^{q_{0}+1}, x_{l-1}:=\frac{z_{l-1}}{x_{I-2}} \in \mathbb{k}^{(}\left(X_{I-1}\right)(\text { if } I \geq 3)
\end{gathered}
$$

There exist families of q-ary LRC codes with locality r whose rate and relative distance satisfy

$$
\begin{array}{ll}
R \geq \frac{r}{r+1}\left(1-\delta-\frac{3}{\sqrt{q}+1}\right), & r=\sqrt{q}-1 \\
R \geq \frac{r}{r+1}\left(1-\delta-\frac{2 \sqrt{q}}{q-1}\right), & r=\sqrt{q}
\end{array}
$$

${ }^{*}$ Recall the TVZ bound without locality: $R \geq 1-\delta-\frac{1}{\sqrt{9}-1}$

LRC codes on curves better than the GV bound

Extensions

Common theme: Automorphism groups of curves

- LRC codes on curves with multiple recovery sets
- Asymptotically good codes with small locality

$$
\begin{aligned}
& \text { Let }(r+1) \mid\left(q_{0}+1\right) \\
& k\left(Y_{l, r}\right)=k\left(x_{1}^{r+1}, z_{2}, \ldots, z_{l}\right)
\end{aligned}
$$

$$
\begin{aligned}
g: & X_{I}
\end{aligned} Y_{l, r},
$$

- Local codes with distance $\rho \geq 3$

Work with I. Tamo and S. Vlăduţ, 2015; ongoing

Cyclic LRC codes

Consider the special case of the RS-like code family with $n \mid(q-1), g(x)=\prod_{h \in H}(x-h)$, where H is a subgroup of \mathbb{F}_{q}^{*}

$$
f_{a}(x)=\sum_{\substack{i=0 \\ i \neq r \bmod (r+1)}}^{(k / r)(r+1)-2} a_{i} x^{i}
$$

Theorem: Consider the following sets of elements of \mathbb{F}_{q} :

$$
L=\left\{\alpha^{i}, i \bmod (r+1)=l\right\} \text { and } D=\left\{\alpha^{j+s}, s=0, \ldots, n-k(r+1) / r\right\}
$$

where $\alpha^{j} \in L$. The cyclic code with the defining set of zeros $\mathscr{Z}=L \cup D$ is an optimal (n, k, r) q-ary cyclic LRC code.

Set of zeros

Subsets of zeros for distance (D) and locality (L)
Proposition: Let $t \mid n$. If \mathscr{Z} contains some coset of the group of t th roots of unity, then
$d\left(\mathcal{C}^{\perp}\right) \leq t$, i.e., \mathcal{C} has locality $r=t-1$.

(BCGT, 2015; ongoing)

Outlook

- Partial MDS codes (max recoverable codes)
- Cyclic codes
- Decoding
- Constructions on curves

Thank you!

