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Outline

• I  Inferential framework
• II Demonstration of computer program
• III Complicated problems - examples
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Statistical methods
to separate important changes 

from stochastic variation.
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Continual observation of a time series, 

• Monitoring 
• Surveillance
• Change-point 

analysis

• SPC
• Control charts
• Early warnings
• Just in time

as soon as possible after it has occurred.

with the goal of detecting an important change 
in the underlying process 
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POPULATIONS:

•control of epidemic diseases

•surveillance of known risk factors 

•detection of new environmental risks

INDIVIDUALS:

•natural family planning 
•Hormone cycles

•regular health controls 
•pregnancy

•Intensive care
•fetal heart rate

•surveillance after intervention 
•kidney transplant

Monitoring of health
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Surveillance

• Repeated measurements

• Repeated decisions

• No fix hypothesis

• Time important
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Quality control Stopping rules in
probability theory

Medicine

Inference

Scources of knowledge
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The First (τ-1) observations xτ-1 = x(1), ..., x(τ-1) have density fD

The following observations have density fC

Change in distribution
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Timely detection

of a change in a process

from state D to state C 
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Evaluations

• Quick detection
• Few false alarms

• Frisén, M. (1992). Evaluations of methods for statistical 
surveillance. Statistics in Medicine, 11, 1489 - 1502.
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False alarms

• The Average Run Length at no change, 
ARL0 = E( tA| D)

• The false alarm probability 
P(tA<τ).
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Motivated alarms
• ARL1   The Average Run Length until detection of a 

change (that occurred at the same time as the 
inspection started) E(tA|τ=1).

• ED(t) = E[max (0, tA-t) | J=t] 
• ARL1 = ED(1) 
• CED(t) = E[tA-t | J=t, tA $ t]

• ED= EJ[ED(J)]
• Probability of Successful Detection
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Predictive value

T h e  p r e d i c t iv e  v a lu e  r e f l e c t s
t h e  t r u s t  y o u  s h o u l d  h a v e  in
a n  a l a r m .  

Pr(J#t | tA= t)
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Optimality
• ARL-optimality
• ED-optimality
• Minimax-optimality

• Frisén, M. and de Maré, J. (1991). Optimal surveillance. 
Biometrika, 78, 271-80.

• Frisén, M. (in press), Statistical Surveillance. Optimality and 
Methods., International Statistical Review.

• Frisén, M. and Sonesson, C. (2003): Optimal surveillance by 
exponentially moving average mehtods. Submitted.
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ARL Optimality

• Minimal ARL1 for fixed ARL0

• Observe that τ=1
• Consequences demonstrated in

– Frisén, M. (in press), Statistical Surveillance. Optimality 
and Methods., International Statistical Review.

– Frisén, M. and Sonesson, C. (2003): Optimal surveillance
by exponentially moving average mehtods. Submitted. 

• Use only with care!
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Utility
• The loss of a false alarm is a function of the the time 

between the alarm and the change point. 
• The gain of an alarm is a linear function of the same 

difference.
( )
( )
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1 A 2 A

h t -τ          , t τ
u(t , τ)

a t -τ a ,  t τ
<=  ⋅ + ≥

Shiryaev, A. N. (1963), "On Optimum Methods in Quickest Detection Problems," 
Theory of Probability and its Applications, 8, 22-46
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ED Optimality

M i n i m a l  e x p e c t e d
d e l a y

 f o r  a  f i x e d  f a l s e
a l a r m  p r o b a b i l i t y

ED

[ ]τ<AtP

Maximizes the utility by Shiryaev
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Minimax Optimality
• Minimal expected delay

for the worst value of τ
and for the worst history of observations before τ

– Pollak, M. (1985), "Optimal Detection of a Change in 
Distribution," The Annals of Statistics, 13, 206-227

– Lai, T. L. (1995), "Sequential Changepoint Detection in Quality-
Control and Dynamical-Systems," Journal of the Royal Statistical 
Society Ser. B, 57, 613-658.
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Methods

• LR
– Shiryaev-Roberts

• Shewhart
• EWMA

– Moving average
• CUSUM
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Partial likelihood ratio

– Detection of τ=t
– C={τ=t} D={τ >s}
– L(s, t) = fXs(xs |τ=t) /fXs(xs | τ >s)



Marianne Frisén DIMACS 03 22

LR

• Full likelihood ratio
– LR(s) = fXs(xs |C) /fXs(xs |D) 

– C={τ≤s}     D={τ >s}

– LR(s)=
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LR

• Fulfills several optimality criteria e.g.
• Maximum expected utility

• Frisén, M. and de Maré, J. (1991). Optimal surveillance. Biometrika, 78, 
271-80.
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LR
• Alarmrule equivalent to rule with constant limit 

for the posterior probability 
– if only two states C and D.
– Frisén, M. and de Maré, J. (1991). Optimal surveillance. Biometrika, 78, 271-

80.

• ”The Bayes method” 
• Frequentistic inference possible

• Comparison: Hidden Markov Modeling and LR
– Andersson, E., Bock, D. and Frisén, M. (2002) 

Statistical surveillance of cyclical processes with 
application to turns in business cycles. Submitted.
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Shirayev Roberts

• The LR method with a non-informative prior.
• The limit of the LR method when the intensity 
ν tends to zero.

• Can often be used as an approximation of LR 
for rather large values of ν

Frisén, M., and Wessman, P. (1999), "Evaluations of Likelihood Ratio Methods for
Surveillance. Differences and Robustness.," Communications in Statistics. 

Simulations and Computations, 28, 597-622.
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Shewhart

• Alarmstatistic
X(s)=L(s,s) 

• Alarmlimit 
constant (often 3σ)

• Alarmrule
tA = min{s: X(s) > 3σ},
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EWMA

Alarmstatistic

Approximates LR if
– Frisén, M. (in press), Statistical Surveillance. Optimality and 

Methods., International Statistical Review.
– Frisén, M. and Sonesson, C. (2003): Optimal surveillance by 

exponentially moving average mehtods. Submitted. 

λ = 1 - exp(-µ2/2)/(1-ν) 
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CUSUM

• Alarmrule
– max(L(s, t); t=1, 2,.., s) > G

• Minimax optimality
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Alarm limits 
at the second observation
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Parameters for optimizing
The Shewhart method has no
parameters 

The CUSUM and the Shiryaev-
Roberts methods have one
parameter M to optimize for the
size of the shift :.

The LR-method has besides M
also the parameter V to optimize
for the intensity <. 
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Similarity

The LR, Shiryaev-Roberts and the
CUSUM methods tend to the Shewhart
method when the parameter M tends to
infinity.

This explains some earlier claims of
similarities between some methods. These
studies were made for very large values of M.
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Predictive value

Shewhart  -  many early
alarms. 
These alarms are often
false.

The LR and the Shiryaev-
Roberts methods have
relatively constant
predicted values.

A constant predicted value 
makes the same kind of action appropriate 

both for early and late alarms. 


