Bayesian Measurement of Associations in Adverse Drug Reaction Databases

William DuMouchel Shannon Laboratory, AT&T Labs – Research dumouchel@research.att.com

DIMACS Tutorial on Statistical Surveillance Methods Rutgers University June 20, 2003

Data Mining of Spontaneous ADR Reports

- Databases of Adverse Drug Reaction Reports
 - Objectives and Limitations
- Drug Event Counts as a Two-Way Table
 - Empirical Bayes Compared to Other Approaches
- Generalization to Data Mining Market Basket Problem
 - Models for Item Sets with 3 or More Items
- Guilty and Innocent Bystanders
 - Adjusting Drug-ADR Associations for Drug-Drug Associations
- Monitoring for Change over Time
 - Kalman Filter Model for Event Frequencies in Databases
- Discussion and Conclusion

Databases of Adverse Drug Reactions

- FDA Spontaneous Report System (SRS)
 - Post-Marketing Surveillance of all Drugs since 1969
 - Data in the Public Domain, Available from FDA
- FDA Adverse Event Reporting System (AERS)
 - Replaced SRS in 1997 with New AE Coding System
 - COSTART vs. MEDRA
- FDA/CDC Vaccine Adverse Events (VAERS)
 - Stricter Laws for Vaccine Adverse Event Reporting
- Other Databases for Medical Devices, etc.
- World Health Organization Collects Similar Data across Countries

3

Objectives and Limitations of Analysis

- Explore for Drug-Event Associations
 - Estimate a Measure of Association for every Combination
 - How Can a Rate Be Defined without a Denominator?
 - Matching External Sales or Prescription Counts Not Feasible
 - We Construct Internal Denominators from Independence Model

4

- Screening Objective All Findings Require Follow-up
- Severe Limitations of Data Reliability
 - No Research Protocol
 - Adverse Event Report Rates Vary from Year to Year
 - Substantial Under-Reporting to the FDA
 - No Certainty that a Reported Reaction Was Causal
 - Differential Report Rates of Adverse Events by Drug

Finding "Interestingly Large" Cell Counts in a Massive Frequency Table

- Large Two-Way Table with Possibly Millions of Cells
 - Rows and Columns May Have Thousands of Categories
 - Most Cells Are Empty, even though N.. Is very Large
- "Bayesian Data Mining in Large Frequency Tables"
 - The American Statistician (1999) (with Discussion)
 - Analyzed SRS Database with 1398 Drugs and 952 AE Codes
 - N_{ij} = Count of Reports Containing Drug i and Event j
 - Only 386K out of 1331K Cells Have $N_{ij} > 0$
 - 174 Drug-Event Combinations Have $N_{ij} > 1000$
- Naïve Baseline Frequencies $E_{ij} = N_{i.} N_{.j} / N_{.j}$
 - Extension to Stratification: Sum Independence Frequencies Defined Separately over Strata Based on Age, Sex, etc.

Empirical Bayes Gamma-Poisson Shrinker

- Estimate $\lambda_{ij} = \mu_{ij}/E_{ij}$, where $N_{ij} \sim Poisson(\mu_{ij})$
- Assume Superpopulation Model for λ
 - Prior Distribution Is Mixture of 2 Gamma Distributions
 - Estimate the 5-Parameter Prior from All the (N_{ij}, E_{ij}) Pairs
- Posterior Distributions of each λ_{ij} Are Used to Create "Shrinkage" Estimates
 - EBGM = Estimate of μ_{ij}/E_{ij} Has Smaller Variance than N_{ij}/E_{ij}
 - Rank Cells by EB05_{ij} = Lower 5% Point of Posterior Dist.
 - More "Interesting" than Ranking Cells Based on "P-Values"
 - Compare (N = 10, E = 0.1) to (N = 2000, E = 1000)
- GPS Software Available ftp://ftp.research.att.com/dist/gps/
 - ML and EB Estimation, with Excel-Compatible Input/Output

Alternative: Proportional Reporting Ratio

- Each Cell of Drug x Event Table Defines a 2 x 2 Table
 - Evans (Pharmacoepi. Drug Safety 10: 483-96, 2001)
 - Pool Counts Over All Other Drugs and All Other Events
 - $PRR_{ij} = [a_{ij}/(a_{ij} + b_{ij})] / [c_{ij}/(c_{ij} + d_{ij})]$
 - Reduce Variance by Requiring $N_{ij} = a_{ij} > 2$ and $\chi^2 > 4$
- For N>20 or so, N/E = EBGM = PRR to a few percent
 - PRR Could Adjust for Stratification, but None Published
 - EB05, EB95 Provides Confidence Limits Not Available for PRR
 - EBGM and EB05 Available and Reliable for N = 1 or 2
 - Shrinkage Estimation Smoothing Provides Elegant Transition from N = 1 to Large N
 - Generalization: MGPS for Triples & Higher-Order Associations

Alternative: BCPNN

- Bayesian Confidence Propagation by Neural Network
 - Orre et al (Comput Stat Data Anal 3: 473-93, 2000)
 - Bayesian Shrinkage Model Based on Multinomial, not Poisson
 - Uses 2x2 Tables Based on Counting Reports, not Combinations
 - Computes Posterior Mean and Variance of IC = $log_2(\lambda)$
 - Signal Score IC $2*\sqrt{V}$ Similar in Concept to EB05
 - Bayesian Prior is Fixed in Advance, Not Estimated from Data
 - Results Very Similar to MGPS with Exponential Prior Dist.
- For N>20 or so, N/E = EBGM = 2^{IC}
 - Adjustment for Stratification Vars Not Available in BCPNN
 - Confidence Limits EB05 Do Not Depend on Normal Approx.
 - MGPS Generalization to Triples, etc., Better Developed

8

The RV Vaccine Was Used in U.S. in 1998-99 and Was Withdrawn from the Market when the Association with Intussusception, a Severe GI Condition, Was Confirmed.

Multi-item Gamma Poisson Shrinker

- Extend GPS to Analyze Arbitrary Itemset Frequencies
 - E.g. Drug-Drug-Event, Drug-Event-Event, 4-tuples, etc.
 - "Market Basket Problem" in Data Mining Literature
 - Computational Challenge—Huge No. of Possible Itemsets
- EB Model Same as GPS—Baseline Freqs. *E* Change
 - P_{si} = Prop. of Stratum s Reports with Item *i* (Drug or Event)
 - P_{si} Small, but $\Sigma_i P_{si}$ (= Expected # Items/Report) > 1
 - For Triples, $E_{ijk} = \sum_{s} n_{s} P_{si} P_{sj} P_{sk}$ (n_{s} : #Reports in Stratum s)
 - Condition on $N_{ijk} \ge n^*$ to Reduce Counting and EB Calculations
 - We Choose Smaller *n** than in Market Basket Literature
 - Interpretation of EBGM & EB05 Same as for GPS
- MGPS Extensions: Different Definitions of Baseline
 - Compare 2 Populations: $F_{ijk} = E_{ijk} *$ (EBGM from Elsewhere)

Multi-Item Associations vs. Pairwise Associations

- Suppose Itemset (Drug A, Drug B, C = Kidney Failure) Is Unusually Frequent
 - Are merely the Pairs AB, AC, BC Frequent, or Does AB Cause C (Drug Interaction)
- Comparison of EB Estimate to the Predictions of All-2-Factor Interaction Log-Linear Model
 - $EBGMdiff = EBGM E_{AII2F}/E$
 - *E* is the Expected Count from Independence
 - Compute $E_{A/I2F}$ with Shrinkage Estimates of Pairwise Counts
- Alternate Model: Define $\lambda = \mu / E_{A/I2F}$ and Shrink Counts toward the All-2-Factor Model Directly
 - In MGPS, define Baseline as E_{AII2F}
 - Resulting *EBGM* > 1 Indicates Possible 3-Factor Interaction

Guilty and Innocent Bystanders

- GPS, PRR and Similar Methods Don't Account for Effect of Drug-Drug Assocs. on Drug-Event Assocs.
 - Toy Example: DI=Drug of Interest, GB=Guilty Bystander Drug IB=Innocent Bystander Drug, AE=Adverse Event [All 0-1 Vars]
 - P(DI=1)=.5, P(GB=1|DI)=.75-DI/2, P(IB=1|DI)=.25+DI/2, P(AE=1|DI,GB,IB) = .25+(DI+GB)/4

	Prob		D	l=0			DI=1						
	X	IE	3=0		IB=1			IB	=()	IB=1		
	128	GB=0	GB=1	GB=0) GB	8=1		GB=0	C	SB=1	GB=0	GB=1	
Probs	AE=0) 9	18	3	6	5	6			1	18	3	
	AE=1 3		18	1	6	6		6		3	18 9		
										[1		
	Prob									GE	3=0	GB	=1
Note Bias in	x128	GB=0	GB=1	IB=0	IB=1	DI=	0	DI=1		DI=0	DI=1	DI=0	DI=1
	AE=0	36	28	34	30	36	;	28		12	24	24	4
	AE=1	28	36	30	34	28	•	36		4	24	24	12
	OR	1.6	65	1.2	8		1.	65			3	3	3

Tata 🌔

Detecting Bystander Bias

- Loglinear Models or Logistic Regression
 - Note this Bias Is Distinct from 3-Factor Interaction
 - All-2-Factor Model Can Detect Bystander Bias
 - Practical Limit of About 25 Items to Fit All-2-Factor Model
 - Logistic Regression of Each AE on a Few Hundred Drugs Might Be Feasible
- Example: Drugs for Type 2 Diabetes/Hprtn/Hi Chol. in AERS (1997-2001)
 - LACTIC.ACIDOSIS [OR = Odds Ratios]

	N	E	N/E	OR.1	OR.9	tstat	
ATORVASTATIN	39	54.8	0.7	0.7	0.3	-6.4	
ENALAPRIL	39	24.0	1.6	1.6	0.9	-0.9	
FUROSEMIDE	148	69.6	2.1	2.3	1.5	4.4	
GLIPIZIDE	78	21.7	3.6	3.8	0.5	-5.9	
HYDROCHLOROTHIAZIDE	20	20.4	1.0	1.0	0.6	-2.2	
LISINOPRIL	62	36.3	1.7	1.8	0.7	-2.2	
METFORMIN	685	31.7	21.6	44.9	56.4	71.1	
PIOGLITAZONE	9	10.1	0.9	0.9	0.2	-5.5	
PRAVASTATIN	11	16.2	0.7	0.7	0.4	-3.1	

• OR.1: Logistic Regression on 1 Drug + 162 Strata; OR.9: Use all 9 Drugs William DuMouchel Bayesian Data Mining for Adverse Drug Reaction Associations 14

Screening for Bystander Effects

- Generic Search with No Prior Specification of Hypotheses
- Naïve Bayes Model Using Drug1-Drug2-AE Triples
 - DI, AE, {D_j, j = 1, ..., J} (D_j: Potentially Confounding Drugs)
 - Assume $P(\{D_1,...,D_J\}|DI, AE) = \prod_j P(D_j | DI, AE)$, then:
 - $OR(DI,AE|D_1=0,...,D_J=0) = OR(DI,AE) \prod_j [OR(DI,AE|D_j=0)/OR(DI,AE)]$
 - EBGM(DI,AE|D₁=0,...,D_J=0) \approx EBGM(DI,AE) Π_{j} [EBGM(DI,AE|D_j=0)/EBGM(DI,AE)]
- For each DI-D_i-AE Triple, Compare DI-AE Overall and w/ D_i=0
 - Product of Ratios Above Is "Bystander Bias Adjustment Factor"
 - Interpreted as Extrapolating to Situation w/ No Concomitant Drugs
 - Sensitive to DI D_J Drug Interactions as well as Confounding Effects
 - Repeat this Analysis for ALL Combinations of DI-AE
 - Take Most Frequent 548 Drugs and 688 AEs from Post-1997 AERS: 177,020 Observed Drug-AE Pairs, Potentially 103M Drug1-Drug2-AE Triples
 - Example with Restriction to 691,722 D1-D2-AE Triples Appearing in 5+ Reports
 - Frequent-Triple Restriction Reduces Interpretability of Bias Adjustment Factor
 - Assume Restricted Factor Is Useful as a Relative Indicator of Bystander Bias

Defining EBGM(DI, AE | $D_j = 0$)

- Use Hyperparameters from Original (D, E) Model
 - Replace N_{DI AE} by N_{DI AE} N_{DI AE} Dj
 - Replace E_{DI AE} by E_{DI AE|Dj=0} (conditional independence model)
- Compute $E_{DI AE|Dj=0}$ in one of two ways
 - Ignoring Stratification
 - $E_{DI AE|Dj=0} = [N_{AE} N_{AE Dj}][N_{DI} N_{DI Dj}]/[N N_{Dj}]$
 - With Stratification
 - Use subscript s for strata, λ for original two-way EBGMs
 - Approximate by-strata two-way counts to avoid having to save two-way counts for every stratum

•
$$E_{DI AE|Dj=0} = \sum_{s} \{ [N_{AE,s} - \lambda_{AE Dj} N_{AE,s} N_{Dj,s} / N_{s}] \times [N_{DI,s} - \lambda_{DI,Dj} N_{DI,s} N_{Dj,s} / N_{s}] / [N_{s} - N_{Dj,s}] \}$$

Glipizide – Lactic Acidosis Revisited

•		DRUG	Adver	se.Eve	ent	N	${oldsymbol E}$	EBGM	#CONCOM.	DRUGS	logBia	s adjEBGM
	0	GLIPIZIDE	Lactic	Acido	osis	78	21.74	3.40)	20	-4.1	8 0.052
•		CONCOMITA	NT N.TI	riple	$E \cdot T$	riple	NwoCo	ONCOM	EwoCONCOM	EBGMw	OCONC	EBGMratio
1		AMLODIPIN	νE	8		0.97		70	20.77		3.17	0.933
2		ASPIRI	۲N	12		1.70		66	20.04		3.09	0.910
3		BENAZEPRI	Ľ	5		0.11		73	21.62		3.18	0.936
4		DIGOXI	۲N	10		0.69		68	21.04		3.04	0.895
5		FUROSEMII	DE	18		1.11		60	20.63		2.73	0.804
6		GEMFIBROZI	ГL	6		0.19		72	21.55		3.15	0.928
7		INSULI	۲N	5		0.85		73	20.89		3.29	0.969
8		ISOSORBII	DE	10		0.39		68	21.35		3.00	0.883
9	L	EVOTHYROXIN	1E	10		0.92		68	20.82		3.07	0.904
10		LISINOPRI	[L	8		0.60		70	21.13		3.12	0.919
11		METFORMI	EN	74		0.51		4	21.23		0.23	0.068
12		METOPROLO)L	5		0.58		73	21.16		3.25	0.957
13		NIFEDIPIN	νE	5		0.39		73	21.34		3.23	0.951
14		PAROXETIN	1E	5		0.39		73	21.35		3.22	0.948
15		QUINAPRI	[L	5		0.16		73	21.57		3.19	0.939
16		RANITIDIN	1E	5		0.51		73	21.23		3.24	0.954
17		SIMVASTATI	۲N	9		0.63		69	21.10		3.08	0.907
18		VITAMI	EN	5		0.81		73	20.93		3.29	0.969
19		VITAMIN_	_D	5		0.09		73	21.65		3.18	0.936
20		WARFARI	۲N	7		0.76		71	20.98		3.19	0.939

logBias = sum(log(EBGMratio))

More Results from Naïve Bayes Model

Largest 15 Bias Adjustments for Drug-AE Pairs Having EBGM>10, N>100

	DRUG	Adverse.Event	N	${m E}$	EBGM	#ConcDrugs	logBias
2	METAMIZOLE	Blister	116	1.8	60.3	107	-24.1
8	VANCOMYCIN	Blister	149	14.0	10.5	104	-18.1
15	DEXTROAMPHETAMINE	Cerebrovascular Accident Nos	110	7.8	13.9	6	-8.9
14	DEXTROAMPHETAMINE	Injury Nos	122	8.9	13.4	9	-10.1
9	AMPHOTERICIN B	Multi-Organ Failure	141	10.5	13.2	82	-13.5
11	DOPAMINE	Multi-Organ Failure	105	7.9	13.0	77	-12.2
13	VANCOMYCIN	Multi-Organ Failure	188	18.4	10.1	87	-10.8
12	DOPAMINE	Shock	111	10.8	10.2	87	-11.6
1	AMPHOTERICIN B	Stevens Johnson Syndrome	108	9.2	11.6	91	-27.1
3	METAMIZOLE	Stevens Johnson Syndrome	131	2.0	62.6	113	-23.7
6	VANCOMYCIN	Stevens Johnson Syndrome	154	14.9	10.2	106	-19.4
4	METAMIZOLE	Toxic Epidermal Necrolysis	137	1.4	91.3	117	-22.1
5	CEFTAZIDIME	Toxic Epidermal Necrolysis	114	4.5	24.4	104	-19.8
7	VANCOMYCIN	Toxic Epidermal Necrolysis	171	10.5	16.0	120	-18.7
10	ANTIHYPERTENSIVE	Vulvovaginal Discomfort	112	10.6	10.4	6	-13.0

Investigate for Possible Interactions or Confounding with Indications or Other Drugs William DuMouchel Bayesian Data Mining for Adverse Drug Reaction Associations 18

Monitoring for Change Over Time

- Suppose a Database of Reports Is Replaced Regularly
 - E.g. Examine all New Reports Every Month or Quarter
 - Millions of Event Frequencies Being Monitored for Change
 - Almost All Counts 0 or Small
 - Comparison to Independence Not an Issue, but Comparison to the Recent Past Is
 - May Want to Detect Significant Decreases as well as Increases
- KFGPS: Method to Smooth Event Count Time Series
 - Detect Which Ones Have Shown Sudden Frequency Shifts
 - Shrinkage Estimates Discount Poisson-Level Variations
 - Adaptation of Well Known Kalman Filter Methodology
 - Bayesian Estimates Allow Posterior Selection of Largest Shifts
 - Updating Scheme Requires Storage of Just Last Period Data
 - Baseline Frequency this Period Is Posterior Estimate from Last

19

Future Work

- Graphical Exploration of the Thousands of Empirical Bayes Estimates Generated
- Use of Demographic Variables as Items
 - Associations with Dummy Variables for Age, Sex, etc.
 - Non-Rare Items Have Different Statistical Properties
 - Contrast with Stratification by such Variables
- Further Work on Multi-Item Associations
 - Bystander Problem (Deconfounding)
 - Measures of Drug-Drug Interaction Effects
- Analysis of other Types of Clinical Databases
 - Adverse Events from Collections of Clinical Trials
 - Making Use of Exposure Information; Meta-Analysis of ADRs
 - Associations from HMO-style Databases

Preliminary Work: Insurance Claims Data

- MarketScan 1998 Database from MEDSTAT Group (Thomson Corporation)
 - Longitudinal Histories of Inpatient, Outpatient and Prescription Drug Experience for Millions of Covered Lives
 - Private, Medicare and Medicaid Eligible Individuals
- Goal: Use MGPS to Detect ADR Associations
- Challenge: Vast Majority of Drug-Diagnosis Signals Relate Drugs to Primary Symptoms and Co-Morbidities of Diseases They Are Intended to Treat
 - Eliminate ICD9 Codes w/ No Corresponding MEDRA Term
 - Temporal Information: Symptom Occurs After Drug Prescription
- Limited success: Sensitivity Seems Good but many False Positives from Drug Indications

MGPS Model and Algorithm Seem to Perform Well on the Association Problem

- Estimate Interestingness Measure: Frequency Ratio vs.
 Independence or any other Baseline Model
- Empirical Bayes Shrinkage for Bias-Variance Tradeoff
- Reliable Estimation for much Lower Values of *N* than Previous Market Basket Literature
- Use of All-Two-Factor Log-Linear Model Allows Sophisticated Analyses of Larger Item Sets
- Ongoing Use and Validation by FDA and Other Researchers
- Detection of Drug-Drug Confounding and Interactions
 - Logistic Regression and Naïve Bayes Models Are Useful
- Time Series Kalman Filter Model for Event Frequencies
 - State Space Model Provides Efficient Summary of Past History
 - Incorporates Separate Model for Analysis of First-Time Event Counts

References and Acknowledgements

References to EB Measurement of Associations

- DuMouchel W, Friedman C, Hripcsak G, Johnson S, Clayton P (1996) Two applications of statistical modeling to natural language processing. *AI and Statistics* V, ch. 39, edited by D. Fisher and H. Lenz, Springer-Verlag.
- DuMouchel W (1999) Bayesian data mining in large frequency tables, with an application to the FDA Spontaneous Reporting System (with discussion), *The American Statistician*, 53:177-202.
- DuMouchel W, Pregibon D (2001) Empirical Bayes Screening for Multi-Item Associations *Proc. ACMSIGKDD 2001 Intl. Conf. on Knowledge Discovery from Data.* [Best Applications Paper Award]
- Acknowledgement and Thanks for Data, Comments and Suggestions
 - Ana Szarfman, CDER, US FDA
 - David Fram, Lincoln Technologies
 - June Almenoff, GlaxoSmithKline