
Report of the DIMACS Working Group on
Abstractions for Network Services, Architecture,

and Implementation

Jennifer Rexford
Princeton University

Princeton, New Jersey USA
jrex@cs.princeton.edu

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey USA
pamela@research.att.com

ABSTRACT
A workshop on Abstractions for Network Services, Architec-
ture, and Implementation brought together researchers in-
terested in creating better abstractions for creating and an-
alyzing networked services and network architectures. The
workshop took place at DIMACS on May 21-23, 2012. This
report summarizes the presentations and discussions that
took place at the workshop, organized by areas of abstrac-
tions such as layers, domains, and graph properties.

Categories and Subject Descriptors
C.2.0 [Computer-communication Networks]: General;
C.2.1 [Computer-communication Networks]: Network
Architecture and Design

Keywords
Abstractions, architecture, services, education

1. INTRODUCTION
A field of computer science progresses fastest when its

researchers find the right abstractions. Progress comes from
the many benefits of abstraction, including:

• Abstractions embody knowledge about the field, in-
cluding vocabulary and principles, making it easier to
talk about and teach.

• Abstractions provide modularity and separation of con-
cerns, without which the complexity of the subject be-
comes overwhelming.

• Abstractions hide implementation details, so that good
designs can be generalized and turned into reusable
software.

• Abstractions can be formalized, leading to benefits
such as automated reasoning, optimization, and com-
position of components.

In comparison to other fields of computer science, net-
working is in an unusual position because of the Internet.
No other field has an artifact so dominant, and one that
by its very nature demands global interoperability. Conse-
quently, in no other field is it as challenging to envision and
experiment with new abstractions.

Nevertheless, many people feel that the time is ripe for
the field of networking to invest more effort in abstraction.

Keshav points out that the recent emphasis on clean-slate
design has exposed the paucity of useful abstractions [1].
Shenker has said that networking still focuses more on mas-
tering complexity than on extracting simplicity [2]. Looking
at the literature of networking, people could be forgiven for
believing that networking is just a plethora of protocols, a
heap of header formats, a big bunch of boxes, or a ton of
tools [3].

With these issues in mind, we organized a workshop on
abstractions for networking. It was held from noon to noon
21-23 May 2012 at Rutgers University in New Brunswick,
New Jersey, with the generous support of the Center for Dis-
crete Mathematics and Theoretical Computer Science (DI-
MACS).

Our hope in organizing this workshop was to foster in-
terest in abstractions for networking as a first-class topic
of research, one that might work synergistically with all
the various “next generation” goals and projects. The title
“Abstractions for Network Services, Architecture, and Im-
plementation” expresses our conviction that successful ab-
stractions must cover, or at least recognize, concerns at all
the levels touched by networking.

For the program, we organized talk sessions on the follow-
ing topics:

• Applications

• Data-Plane Abstractions

• Software-Defined Networks

• Transport, Consistency

• Middleboxes, Failure Detection

• Routing

We scheduled approximately half the workshop time for dis-
cussion, organized around these three questions:

1. Why are abstractions needed?

2. What abstractions are needed?

3. How can research on network abstractions be fostered
and helped to converge?

Answers to Question 2 are needed to link requirements for
abstractions (Question 1) with network mechanisms and
properties of formalisms. Answers to Question 3 are needed
to make room for a kind of research that may not conform
to the cultural norms of the networking community.



The participants in the workshop were Azer Bestavros,
David Clark, Mary Fernandez, Bryan Ford, Nate Foster,
Brighten Godfrey, Tim Griffin, Aaron Jaggard, S. Keshav,
T. V. Lakshman, Boon-Thau Loo, Yun Mao, Vyas Sekar,
Anees Shaikh, Scott Shenker, Robert Soule, David Rosen-
blum, Michael Walfish, David Walker, Alexander Wolf, and
Rebecca Wright. Naga Praveen Katta served as a scribe.

In this report we do not attempt to summarize the talks,
which were excellent, and which can be found on the Web
(see bibliography). Rather, we attempt to capture a bit of
the flavor of the talks and discussions together, by pulling
out some of their themes. Each theme was represented in
multiple talks and the discussion, so that we know it is im-
portant and got several perspectives on it. In the following
sections, names and references indicate the general content
of talks. But what we have written is a blend of multi-
ple talks and discussions, and statements should not be at-
tributed to specific persons (except perhaps us).

2. THE CHALLENGES OF ABSTRACTION
Not surprisingly, many people spoke on why it is so dif-

ficult to formulate successful abstractions. At the level of
application support, David Rosenblum talked about pub-
lish/subscribe systems, which have a very general functional
abstraction that is useful for a wide range of Internet appli-
cations [4]. Implementing the abstraction at Internet scale,
however, requires many difficult trade-offs. After the deci-
sions are made, the result is an implementation that matches
the operating characteristics of only a small subset of the
original range of applications. This subset may be too small
to justify the overall effort, while for applications outside the
subset, the implementation performs poorly or is not cost-
effective. The same phenomenon has been observed with
multicast systems and (arguably) DHTs.

Bryan Ford’s talk focused on the difficulty of abstract-
ing transport protocols—let alone designing and deploying
them—because they are currently at the center of a vor-
tex of conflated concerns [5]. Transport protocols must be
application-oriented in providing well-defined application in-
terfaces, in defining the units of data movement and reliable
transmission, and in providing secure transmission. Trans-
port protocols must be network-oriented because they de-
fine the units of rate control and resource sharing, and con-
sequently interact with routing. Transport protocols also
interact with firewalls, NAT boxes, endpoint naming, and
mobility.

David Clark observed that since networks deviate from
perfect performance because of real-world impairments, an
efficient network is one that has only fundamental impair-
ments, and a general network is one that allows its users to
choose trade-offs among impairments [6]. TCP alone does
not provide a general transport service, because it fixes the
trade-offs. A multiplicity of different services seems better
in this regard, but it is dangerous to specify them with per-
formance guarantees. Research has shown that, for a per-
formance guarantee to be achievable in a general-purpose
network, it must be very unattractive. Attempts to enforce
guarantees in such contexts usually lead to silly behavior.

On a more positive note, a high-level abstraction helps us
reason modularly and reusably about a network function,
independently of its implementation. A general-purpose im-
plementation of the function would allow its users to choose
their cost and performance trade-offs. Even if the func-

tion does not have a single general-purpose implementation,
it can have multiple implementations to cover the design
space.

People believe that probabilistic performance models are
the key to achieving reasonable bounds at reasonable cost,
and that much more research on them is needed to improve
the flexibility of our implementations.

3. LAYERS
Layers are the mother of all network abstractions. The

layered abstraction of the data plane in which the physi-
cal layer moves bits, the link layer provides best-effort lo-
cal packet delivery, the network layer provides best-effort
global packet delivery, the transport layer provides reliable
(or unreliable) transport, and the application layer provides
applications and mnemonic names, has been a major factor
in the success of the Internet so far [2].

Despite this success, the five-layer model has many short-
comings as an abstraction of the current and future Inter-
net. The slow pace of migration to IPv6 shows that it has
not (at least as implemented) provided enough modularity.
Inspection of packet headers shows that it is a gross oversim-
plification of how real Internet traffic is handled. Each layer
is global and its abstraction would ideally have performance
properties as well as logical properties, yet all the evidence
(as noted above) suggests that this is infeasible.

An alternative presented by Pamela Zave is the descrip-
tion of Internet architecture as a hierarchy of layers without
a fixed number of levels [7]. Layers have varying scopes,
so a layer need not be global or universal. Instead of pro-
viding a particular function, each layer is a microcosm of
networking, containing (at least in principle) all the ma-
jor functional components such as a name space, a session
protocol, a routing protocol, and a forwarding protocol. Be-
cause layers appear at many different levels of the hierarchy,
with many different scopes, and for many different purposes,
their versions of each of the basic layer components also vary
accordingly. This “geomorphic” view can, at least, describe
what the Internet is really doing.

For example, Bryan Ford spoke of the need to break the
transport layer into sublayers (semantic, end-to-end secu-
rity, flow, endpoint) to separate some of the conflated con-
cerns [5]. For each sublayer, there are many possible choices.
A particular combination of choices (i.e., sublayer instances)
can be seen as forming a “geomorphic” layer that is used by
some applications and not by others. A different set of end-
points, communicating for the purpose of a different appli-
cation, could use a different layer that combines a different
set of choices.

Keshav’s talk on universal switching machines (USMs)
takes this idea even further [8]. As in the geomorphic view,
in his view each layer contains the same basic functions as
other layers, just customized and instantiated for different
purposes. In the USM view, in addition, each layer con-
sists only of USMs, each of which is a programmable ma-
chine with a prescribed set of capabilities. This provides
much more structure, with which fundamental questions of
reachability, naming, and state creation can be explored and
reasoned about.

4. DOMAINS
Another important concept, and one that has not received



enough attention as a basis for abstraction, is domains. In
relation to the classic five-layer model, domains have verti-
cal boundaries while layers have horizontal boundaries. Do-
mains include trust domains [6] and autonomous domains
(defined by ownership). There are also domains defined by
capability or interoperability, e.g., the domain of nodes that
understand a specific protocol. In the geomorphic view lay-
ers have both horizontal and vertical boundaries, so the re-
lationship between geomorphic layers and trust domains is
not yet clear.

David Clark pointed out that, while encryption is a good
security tool, it is only useful to protect communication be-
tween two parties that trust each other—an increasingly
rare scenario. Communication between mistrustful parties
is communication between trust domains, and requires ad-
ditional security safeguards such as virus detection.

Dependability (in the broad sense) is another issue that
may best be studied from the viewpoint of domains. For ex-
ample, Michael Walfish argued that today’s failure-detection
mechanisms hide too much information from the end hosts,
making it difficult for applications to respond effectively,
making their own decisions about whether and how to re-
cover [9]. He also pictured failure-detection mechanisms as
orthogonal to layers and funneling multi-layer reports to
applications. To reduce the overhead for conveying fine-
grained failure information, he proposed piggybacking fail-
ure information on existing protocols.

This argument has several aspects related to domains.
Defining, monitoring, and reporting failures all have secu-
rity implications. Extending protocols to convey failure in-
formation has capability implications. In addition, the foun-
dation of availability, beyond failure detection, is failover
to trustworthy alternative components. Without trust do-
mains, there is no sound basis for choosing failover compo-
nents.

At one point it was proposed that all security attacks be
characterized as “above” or “below” the security abstrac-
tion. If domains turn out to be the major abstraction for
security, then the partition should be amended to “outside”
or “inside” the security abstraction.

Vyas Sekar’s talk on middleboxes presented a practical
perspective on trust domains, such as those corresponding
to ISPs and enterprise networks [10]. These domains are full
of middleboxes supporting valuable services. Yet legitimate
users who are not members of these domains may have no
access to them. Even within the domains, the middleboxes
present many challenges with respect to configuration and
resource management.

5. GRAPH PROPERTIES
The core network functions—routing, forwarding, mon-

itoring, and access control—are already better-understood
and more general than the functions closer to applications.
Discussion of these functions tends to be based, whether im-
plicitly or explicitly, formally or informally, on properties of
graphs and paths through graphs.

Scott Shenker’s talk on Software Defined Networking (SDN)
argued for a global network view in the form of an annotated
graph (constructed from distributed state with different con-
sistency and durability requirements). The graph can then
support other useful abstractions. For example, an access-
control policy can be expressed by abstracting a subnetwork
as one big virtual switch, and this abstraction can be used

to simplify configuration.
The graph abstraction is a foundation for defining path

metrics such as length and width. It is also a foundation
for defining qualitative properties of sets of paths, including
connectivity, no forwarding loops, no security holes, no black
holes, and waypointing. These are abstractions of proven
value, and several speakers talked about how to build on
these foundations.

In addition to proposing an abstraction for SDN, Shenker’s
talk discussed ways to confront the scalability challenges of
managing large wide-area networks. He proposed a hierar-
chical representation of the network topology, where por-
tions of the topology are combined together into a single
logical node (and its external ports) at the next level. Each
group of nodes has a logical SDN controller that installs the
forwarding state in these nodes (based on a single forwarding
table from the parent controller) and provides an aggregated
view of network events and traffic statistics about the group
to the parent controller.

Nate Foster’s talk [11] proposed programming abstrac-
tions for software-defined networks, with an emphasis on
abstractions for updating a network-wide forwarding policy
consistently. In a per-packet consistent update, every packet
follows either the old policy or the new policy for every hop
in its journey, rather than some mixture of the two poli-
cies. Foster presented several ways to implement consistent
updates using OpenFlow-compatible mechanisms. The talk
also described how today’s OpenFlow API makes it difficult
to compose multiple software modules into a single applica-
tion, and presented higher-level programming abstractions
that improve modularity.

Tim Griffin’s talk [12] focused on how to separate what
path is computed, which is usually an optimal path with
respect to some metric (e.g., shortest, widest), from how
a routing protocol computes it. This is valuable because
of the mathematical theory of semirings, which shows that
if the what has certain properties, the how can be accom-
plished with generic algorithms. The MetaRouting project
exploits this by offering a language of combinators for spec-
ifying complex metrics, combined with a library of verified
algorithms for routing based on these metrics.

Despite its promise, the theory of semirings has current
limitations requiring further research. A focus on global
(rather than local) optimality is too restrictive. Some real-
istic metrics do not have the algebraic properties on which
semiring theory relies. The relationship between routing
and forwarding may not be as straightforward as is usually
supposed.

Brighten Godfrey’s [13] talk on abstractions for network
routing focused on how to create routing systems that are
flexible and extensible, and how to compare different archi-
tecture quantitatively. Godfrey discussed how pathlet rout-
ing, which stitches together path segments into an end-to-
end path, can capture a wide range of routing architectures
from source routing to today’s BGP, and a variety of solu-
tions in between. Pathlet routing also gives network owners
the flexibility to define how their networks can be used.

6. PRESERVING AND PROMOTING
ABSTRACTIONS

If good abstractions are hard to come by and the cur-
rent Internet does not have enough of them, it follows that



we need to understand how to preserve and promote ab-
stractions. Although the working group did not come to
any consensus on the best ways to preserve and promote
abstractions, some general themes emerged from the discus-
sions.

One principle for preserving abstractions was a subtext
of almost every talk: “Design for variation in outcome, so
that the outcome can be different in different places, and
the tussle takes place within the design, not by distorting or
violating it” [14].

Brighten Godfrey introduced a quantitative model of evolv-
ability that may help us think about how to promote new
abstractions. His model uses quantities such as percentage
of nodes deploying a new protocol, the probability of an at-
tack (in the sense of rejection) on a new protocol, utility to
deployer, and deployment cost. Simulations provide insight
into the relationships among these quantities.

Everyone agreed that education is an important means
of promoting abstraction, and would welcome more use of
abstraction in the networking curriculum. There may also
be other ways to communicate the value of abstractions.
For example, graduate students and postdocs know they
need help with designing valid experiments. A design for an
experiment is all about controlling some factors and varying
other factors; the controlled factors can be thought of as an
abstraction, while the varying factors represent its range of
possible implementations.

It was felt that theory shines most brightly when it con-
firms and explains good practical intuitions. This kind of
theory results from close cooperation between theoreticians
and practitioners. In the field of databases, PODS and SIG-
MOD are always co-located; perhaps the field of networking
could find similar ways to foster such productive coopera-
tion.

7. CONCLUSION
The workshop showed that there is growing enthusiasm

for abstractions of network services, architecture, and im-
plementation. We cannot say, however, that this enthusi-
asm has taken a coherent shape as yet. We hope that the
participants and others will continue discussing these issues,
so that in a year or two another meeting on the subject will
give evidence of much progress.

Acknowledgments
We would like to thank the participants for their enthusiasm,
including those who encouraged us but could not, in the end,
attend the meeting.

We would also like to thank the DIMACS staff for their
splendid organization and their warm welcome to our par-
ticipants.

8. REFERENCES
[1] S. Keshav, “Editor’s message: Modeling,” Computer

Communication Review, vol. 42, p. 3, July 2012.

[2] S. Shenker, “The future of networking, and the past of
protocols.”
http://opennetsummit.org/talks/shenker-tue.pdf.

[3] J. Rexford, “The networking philosopher’s problem,”
Computer Communication Review, vol. 41, pp. 5–10,
July 2011.

[4] D. S. Rosenblum, “Applications and abstractions: A
cautionary tale.” http://dimacs.rutgers.edu/

Workshops/NetworkServices/Slides/DSRDIMACS.pdf.

[5] B. Ford, “How should we think about transport
abstractions?.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Bryan_Ford.pdf.

[6] D. D. Clark, “Applications and abstractions.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Dave_Clark.pdf.

[7] P. Zave, “Abstractions of the data plane.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/absDataPlaneTalk.pdf.

[8] S. Keshav, “Net working?.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Keshav.pdf.

[9] M. Walfish, “Failure detection as a network
abstraction for end-host applications.” http://

dimacs.rutgers.edu/Workshops/NetworkServices/

Slides/dimacs12-walfish-talk.pdf.

[10] V. Sekar and S. Ratnasamy, “Abstractions for
middleboxes.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Vyas-dimacs.pdf.

[11] N. Foster, J. Rexford, and D. Walker, “Abstractions
for software-defined networking.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Nate-dimacs.pdf.

[12] T. Griffin, “Algebraic path finding.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/Tim_Griffin.pdf.

[13] B. Godfrey, “Abstractions for network routing.”
http://dimacs.rutgers.edu/Workshops/

NetworkServices/Slides/godfrey-DIMACS.pdf.

[14] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden, “Tussle in cyberspace: Defining
tomorrow’s Internet,” IEEE/ACM Transactions on
Networking, vol. 13, pp. 462–475, June 2005.


