Abstractions for Middleboxes

Vyas Sekar Intel Labs

→ StonyBrook

Sylvia Ratnasamy
UC Berkeley

Need for In-Network Functions

Changing applications

Evolving threats

Percentage of Methods Used to Exfiltrate Data

Performance Security Compliance

Policy constraints

New devices

Middleboxes Galore!

Lixia Zhang: "any intermediary device performing functions other than the normal, standard functions of an IP router on the datagram path between a source host and destination host"

Type of appliance	Number	
Firewalls	166	
NIDS	127	
Media gateways	110	Data from a large enterprise:
Load balancers	67	>80K users across tens of sites
Proxies	66	
VPN gateways	45	
WAN Optimizers	44	
Voice gateways	11	
Total Middleboxes	<i>636</i>	
Total routers	~900	

Middleboxes everywhere

Middleboxes are a critical part of the network

Valuable, but "pain points" for everyone

Network Operators

- Cost, Sprawl
- OpEx
- Inflexible
- Can't monetize (ISP)

Middlebox Architects

Lack high-level primitives

- Opaque black boxes
- Can't request services

Users & Researchers

Evolution of the Middlebox Debate

Denial (they shouldn't exist)

→ Acceptance (live with/workaround them)

This is how network innovation occurs! How can we learn from and extend this success?

What abstractions do we need? For Operators, Users, Architects

→ Build, manage middleboxes?

→ Leverage the capabilities?

Outline

Overview

Abstractions for Operators

Abstractions for Users

Abstractions for Architects

Synergies and Discussion

Operator View Today

Operator View Today

Physical boxes, named with IP, coupled to locations

e.g., HTTP needs Firewall \rightarrow IDS \rightarrow Proxy

- -- Complex, Manual, "Physical" coupling
- -- Correctness is hard to verify

Logical view: "DataFlow" Abstraction

Specify "what" processing, not where/how

Network-level View

Each location offers some middlebox capability

Some boxes may offer a subset of capabilities

Tie-in with SDN world

Fire Proxy IDS wall Proxy Fire **Logical View** wall Wan Opt e.g., NOX, 4D, Maestro, **Network Controller RCP Physical View**

Control Plane for Middleboxes

Existing work: Homogeneous routing-like workload

Middleboxes: complex, heterogeneous

- → Policy constraints, resource management
- → New challenges and opportunities

Policy: Coverage Requirement

Coverage: For each UDP session, some node on path runs IDS

Opportunity: Flexibility in "placement"

Policy: Ordering Constraints

Policy Ordering:

For each HTTP session, run IDS before running proxy

Resource Requirements and Load

Load depends on which sessions/actions are assigned to each node

Provisioning and Load Balancing

Control Plane for Middleboxes

New components: Packet steering, Provisioning, Placement

Outline

Overview

Abstractions for Operators

Abstractions for Users

Abstractions for Architects

Synergies and Discussion

State of the world

Middleboxes are a black-box Almost no abstraction to end users

- → Can't get "on-demand" services
- → ISPs can't offer such services

Waypoint Abstraction

Explicitly route via middlebox IP(s)

Proposal: Treat as "Service"

Single logical network providing processing service

Abstract away "Where in network" this processing occurs

Service Resolution

Tradeoffs vs. Waypoint Abstraction

Pros

- Accounting is simple
 - User only pays resolving ISP akin to today's world
 - ISPs "peers" with each other
- Control/Data decoupling
 - Data plane/Packet formats are unmodified
- Designed for partial/incremental deployment
 - Forces apps to think of "best-effort"

Cons

- State in the network
 - E.g., tunnels between the middleboxes at ISPs

Outline

Overview

Abstractions for Operators

Abstractions for Users

Abstractions for Architects

Synergies and Discussion

State of the world

Proxy

Firewall

IDS/IPS

AppFilter

Today: Independent, specialized boxes Vertically integrated stacks Custom software and/or hardware

Problem: Cost, Sprawl, Inflexible

Proposal: Treat as "Computation"

Enables Consolidation, Multiplexing, Extensibility

Reduces CapEx via Multiplexing

Multiplexing benefit = Max_of_TotalUtilization / Sum_of_MaxUtilizations

Extensible Software Stack

Contribution of reusable modules: 30 – 80 %

Outline

Overview

Abstractions for Operators

Abstractions for Users

Abstractions for Architects

Synergies and Discussion

Proposed abstractions

Operators: *Dataflow*

Architects: *Computation*

Users: *Service*

Synergy between abstractions

- Dataflow + Computation → Run anywhere
 - More flexible

- Computation + Service → Anyone can run this
 - Lowers barrier of entry for providers
 - New opportunities for monetization for ISPs

- Computation + Service -> Economies of scale
 - Benefit of "cloud"

Discussion and Open Issues

- Operator-level:
 - Should we make middleboxes SDN-aware?
 - Does middlebox internal state need to be exposed?

- User-level:
 - Tussle between users and operators?
 - Applications vs ISP economic tension?
- Middlebox Architects:
 - Specialized hardware: Clean way to incorporate?
 - Multiplexing different vendors: Isolation vs Reuse?

Reduction in Provisioning Cost

Provisioning_{Today} / Provisioning_{Centralized}

Centralized approach reduces provisioning cost 1.8-2.5X

Pain points for Operators

- High CapEx
 - Specialized solutions
 - Custom hardware

- Many "point" solutions
- High OpEx
 - Narrow interfaces
 - Manual tuning
- Long upgrade cycles (3--5 yrs)
- Can't effectively monetize (ISP)

Pain points for Users and Researchers

- Opaque
 - Can't predict what processing occurs
 - "Tussle" vs. operators

- E.g., Site wants DDoS protection
- E.g., Netflix wants transcoding
- Research/New designs:
 - Undesirable interactions
 - Can't get new ideas deployed

Pain points for Architects

- Low-level protocol details
 - E.g., fragmentation
 - E.g., session reassembly
 - E.g., HTTP corner cases

REAL Programmers code in BINARY.

- Performance
 - Hardware-specific optimizations
- Long development cycles
 - Slows innovation

Some open questions...

- Do middleboxes need to be SDN-aware?
 - Does that enable new functionality?
 - E.g., dynamically offload to other locations
- Can we handle "dynamic" dataflows?
 - E.g., invoke IDS on suspicious flows on-demand
- How much middlebox internal state does the controller need to understand?
 - E.g., does it need NAT table to setup forwarding?

Opportunities and challenges

Opportunities

- Service providers can monetize beyond one-hop
- Invoke services on-demand
- Ease some application vs. ISP tension
 - E.g., Netflix
- Incentivizes deployment (partial/best effort)

Challenges

- Placement patterns
 - On-path vs. Perimeter vs. Specific location?
- Accounting
 - Multi-lateral vs. Bilateral settlements?

Challenges

Hardware accelerators

Isolation among co-resident modules

What does this enable?

- Consolidation
 - Reduce device sprawl

- Multiplexing
 - Repurpose hardware resources more efficiently

- Extensibility
 - Reduce development cycles