Abstractions For
Software-Defined Networks

Nate Foster Jen Rexford & David Walker
Cornell Princeton

O —
o/ o TN
LA (SR ) )



Software-Defined Networking

The Good
« Logically-centralized architecture
« Direct control over the network




Software-Defined Networking

The Good
« Logically-centralized architecture
« Direct control over the network

The Bad

« Low-level programming interfaces
« Functionality derived from hardware




Software-Defined Networking

The Good
« Logically-centralized architecture
« Direct control over the network

The Bad
« Low-level programming interfaces
« Functionality derived from hardware

The Ugly
« Program pieces don't compose
« Many distributed systems challenges




Programming Abstractions




Programming Abstractions

Programming abstractions are crucial for achieving
the vision of software-defined networking.



Programming Abstractions

—————— e ————————————

Benefits

« Modularity \

- Portability il
- Efficiency €<

« Assurance

Programming abstractions are crucial for achieving
the vision of software-defined networking.



This talk: Outline

SDN Basics
e Architecture
« Programming model

Network-Wide Abstractions
e Global network view
« Network updates

Modularity

« Composing programs

« Declarative policies and queries
Vision

» Challenges

« Opportunities



DN

3aSICS



Switches

Table: prioritized list of rules
Rule: pattern, actions, and counters

Pattern: prefix match on headers

Drop
Action: forward or modify Forward(2)

Controller

Counters: total bytes and packets processed



Controllers

1)[0)
Network Events

« Topology changes
« Diverted packets

« Traffic statistics

Control Messages
« Install rule

« Uninstall rules

« Query counters




Controllers

NOX
Beacon
Floodlight
Trema
ONIX
POX

Network Events

« Topology changes
« Diverted packets

« Traffic statistics

Control Messages
« Install rule

« Uninstall rules

« Query counters

. R
i ’\
- _




Example: Reactive Applications




Example: Reactive Applications

Network Event
Forwarding table miss




Example: Reactive Applications

Application ‘
Calculates new rules




Example: Reactive Applications
e ————————

Control Messages
(Un)install rules




Example: Reactive Applications
e ————————

Subsequent Packets
Processed in fast path

Of course, purely proactive applications also possible



twork-Wide

ostractions



Network-Wide Abstractions

e

“Holy grail” of network management

Write one program that specifies the
behavior of the whole network

Packet forwarding
Traffic monitoring
Access control




Network-Wide Abstractions

NOX
Slogan: configuration = function(view) . Giobal network view

« Eventual consistency

Physical
Network




Network-Wide Abstractions

NOX
Slogan: configuration = function(view) . Giobal network view

« Eventual consistency

ONIX

« Network information base (NIB)
« Controller handles replication

Physical
Network




Network-Wide Abstractions

NOX

Slogan: configuration = function(view) . Giobal network view
« Eventual consistency

ONIX

« Network information base (NIB)
« Controller handles replication

POX and others

« Network Object Model (NOM)

« Can write programs that create
virtual network elements

Physical
Network




Network Updates
m

We said configuration = function(view)...

..what happens when the view changes? Network Updates
« Routine maintenance

« Unexpected failures
- Traffic engineering
« Changes to ACLs




Network Updates

We said configuration = function(view)...

Network Updates

« Routine maintenance
« Unexpected failures

- Traffic engineering

« Changes to ACLs

..what happens when the view changes?

Desired Invariants

« No lost packets

« No broken connections
« No forwarding loops

« No security holes




Abstractions for Network Update

Challenges

e The network is a distributed system
e Can only update one element at a time
e \/ery easy to make mistakes




Abstractions for Network Update

Challenges amazon
. . : At 12:47 AM PDT on April 21st, a network
a The ﬂetVVOfk 15 d dlStrlbUted SyStem change was performed as part of our normal
. scaling activities...
e Can only update one element at a time
. The traffic shift was executed incorrectly and
L Very easy to make mistakes the traffic was routed onto the lower capacity

redundant network. This led to a “re-
mirroring storm”...

The trigger for this event was a network
configuration change.




Abstractions for Network Update

amazon
Cha"enges webservices™
. . : At 12:47 AM PDT on April 21st, a network
a The ﬂetWOFk 15 d dlStrlbUted SyStem change was performed as part of our normal
. li tivities...
e Can only update one element at a time Peeing e
. The traffic shift was executed incorrectly and
L Vei’y easy to make mistakes the traffic was routed onto the lower capacity
redundant network. This led to a “re-
mirroring storm”...
The trigger for this event was a network
POSSible ApproaCheS configuration change.

1. Programmer specifies update protocol

2. Controller provides an abstraction
update(config)

with “reasonable” semantics




Abstractions for Network Update — [SIGCOMM 121

Atomic Updates
- Seem sensible...
- ..but are costly to implement... wl«

- ..and reasoning about effects on in- C)’_\K“%/@
flight packets is hard! &



Abstractions for Network Update — [SIGCOMM 121

Atomic Updates

- Seem sensible...

- ..but are costly to implement... wl«

- ..and reasoning about effects on in- RS R /{;)
flight packets is hard! N g

Per-Packet Consistent Updates
Every packet processed with the old
configuration or the new configuration,
but not a mixture of the two




Atomic Updates

- Seem sensible...

- ..but are costly to implement...

- ..and reasoning about effects on in-
flight packets is hard!

Per-Packet Consistent Updates
Every packet processed with the old
configuration or the new configuration,
but not a mixture of the two

Per-Flow Consistent Updates
Every packet in the same flow processed
with old or new configuration, but not a
mixture of the two




Consistent Updates in Action

Security Policy
Src Traffic Action

| Web Allow
-‘ Non-web  Drop

Any Allow




Consistent Updates in Action

Security Policy

Src Traffic Action
_‘- ‘ Web Allow

-‘ Non-web  Drop

Any Allow

Configuration A

Process black-hat traffic on F1

Process white-hat traffic on {F2,F3}



Consistent Updates in Action

Security Policy

Src Traffic Action

8 | Web Allow
-‘ Non-web  Drop

y Any Allow

Configuration A

Process black-hat traffic on F1

Process white-hat traffic on {F2,F3}



Consistent Updates in Action

Security Policy
Src Traffic Action

| Web Allow
-‘ Non-web Drop

Any Allow

Configuration A

. Configuration B

Process black-hat traffic on F1 ==y  Process black-hat traffic on {F1,F2}
Process white-hat traffic on {F2,F3} Process white-hat traffic on F3



Consistent Updates in Action

# Configuration A

I =

# Configuration B

Security Policy

I configB = [Rule({IN PORT:1},[forward(5 : .
- ° [RuleEEIN:PORT: 2%, Efor‘wa rdgsg % ; , Src Traffic Action
Fd Rule({IN_PORT:3},[forward(7)]), -‘ Web Allow
Rule({IN_PORT:4},[forward(7)])])
F2] F1_configB = [Rule({TP_DST:80}, [forward(2)]), ‘ Non-web Drop
F3 Rule({TP_DST:22}, [1)]) ; ATy Allow

CO} F2 configB [Rule({TP_DST

Rule({TP_DST:

:80}, [forward(2)]),

22}, [D1)

F3 configB
configB = {I

[Rule({},[forward(2)])]
:SwitchConfiguration(I _configB),

F1:SwitchConfiguration(F1 configB),
F2:SwitchConfiguration(F2_configB),
F3:SwitchConfiguration(F3 configB)}

# Main Function

topo = Topo(...)

update(configA, topo)

...wait for traffic load to shift...
update(configB, topo)




One abstraction, many implementations

Composition principles
« Combine updates, preserve consistency

Two-phase commit e
- Construct versioned internal and edge updatelconfig
configurations
- Phase 1: Install internal configuration o
. erie,?%
« Phase 2: Install edge configuration S, S
] alculate rules,

generate messsages

Pure Extension
 Update strictly adds paths

Pure Retraction
 Update strictly removes paths

» Raw OpenFlow
*
+, control messages
b3

Slice Update
- Update only affects a few switches



Network Updates, Formally

Global Update Packet

Config \, l // Queue

(C,Q) — (C", Q")



Network Updates, Formally

Global Update Packet

Config \{ l /  Queue

(C,Q) — (C", Q")

Theorem

An update u from C1 to Czis per-packet consistent if and
only if it preserves all properties satisfied by C1 and Cb.




Network Updates, Formally

T RSV AE A D WY

FUER. wPild satinfien

a8 0% i

=y - { Bzt I~ rom mld . el

' prOperty PVt 1o eyl O™ et

B LR LT ST ) et et

o 22 L R e L
A hg U il —
1t X‘:. 8 ".' TH' gy < ‘“ T VORI \_pechn, mmwl vt 4y
atteld ¥ or oL . ,_', PP et _l-‘r 1 3~ \ "1'1'1:.‘0. '\.‘.".M'
! pr—. - R f L LLEN . 0l
n‘lln‘l - e~ ) vl s \ueerty. mmly S

o > |




Verification

Corollary
To verify that a property is invariant across an update,
simply check that the old and new configurations

both satisfy it




Verification

Corollary
To verify that a property is invariant across an update,
simply check that the old and new configurations
both satisfy it

Network Model



Verification

Corollary
To verify that a property is invariant across an update,
simply check that the old and new configurations
both satisfy it

Network Model

!

Property —>|Model Checker




Verification

Corollary
To verify that a property is invariant across an update,
simply check that the old and new configurations
both satisfy it

Network Model

!

Property —>|Model Checker




Verification

Corollary
To verify that a property is invariant across an update,
simply check that the old and new configurations

both satisfy it

Properties
« Connectivity l
e Loop freedom
- Blackhole freedom Network Model
* Access control l
« Waypointing ‘/
- Totality Property —>|Model Checker i




Modaularrty



Composing Programs

Many applications decompose
naturally into components




Composing Programs

Many applications decompose
naturally into components

Aanoosiq
Bunnoy
ULIOJUON

B ]
~
Y s
&
5
Bui
u .‘




Composing Programs

Many applications decompose
naturally into components

Want to write these components
once, and use them many times...

Aanoosiq
Bunnoy
ULIOJUON

.
-. 3
N
o
&>
5
Bu
g




Composing Programs

Many applications decompose
naturally into components

Want to write these components
once, and use them many times...

Aanoosiq

A
o
=
=
=
«

Buloyuop

..but this is difficult to achieve using
current controllers

- Network events processed by each
component (in some specified order)

» May either propagate or suppress each event

- Components manipulate switch state directly

- State generated by one component can be
accessed by others




Modularity Problems

Monitor
incoming
web traffic

Forward from
port 1to 2 and
port2to 1

19jeaday
A0JIUOIN g3/




Modularity Problems

Monitor
Incoming
web traffic

Forward from
port 1to 2 and
port 2to 1

A
@®
o
[
%
e

L sonuow asm



Modularity Problems

Monitor
Incoming
web traffic

Forward from
port 1to 2 and
port 2to 1

A
@®
o
[
8
]
=

Jojuol gap

Problems
«Repeater rules too coarse grained
«Monitoring rules don't forward




Example: Repeater + monitor

Forward from
port 1 to 2 and
port 2 to

Repeater

def switch_join(switch):
# Repeat Port 1 to Port 2
pl = {in_port:1}
al = [forward(2)]
install(switch, pl, DEFAULT, al)

# Repeat Port 2 to Port 1

p2 = {in_port:2}

a2 = [forward(1)]
install(switch, p2, DEFAULT, a2)

When a switch joins the network, install two rules



Example: Repeater + monitor

Monitor
iIncoming
web traffic

Web Monitor

def switch_join(switch)):
# Web traffic from Internet
p = {inport:2,tp_src:80}
install(switch, p, DEFAULT, [])
query_ stats(switch, p)

def stats _in(switch, p, bytes,...)
print bytes
sleep(30)
query_stats(switch, p)

When a switch joins the network, install a monitoring rule



Example: Repeater + monitor

s =2, L =, I

_‘ Répééter + Web Monitor

def switch_join(switch):
pl = {inport:1}
al = [forward(2)]
install(switch, patl, DEFAULT, None, al)
p2 = {inport:2}
pat2web = {in_port:2, tp src:8@}
a2 = [forward(1)]
install(switch, pat2web, HIGH, None, a2)
install(switch, pat2, DEFAULT, None, a2)
query_stats(switch, pat2web)

Jojeaday

$
F
N
)
¥ 4
\

OHUO 99

def stats in(switch, p, bytes, ...):
print bytes
sleep(30)
query_stats(switch, p)

Must think about both tasks at the same time



Example: Repeater + monitor

e L =
1

-_‘ ﬁepééter + Web Monitor

def switch_join(switch):
pl = {inport:1}
al = [forward(2)]
install(switch, patl, DEFAULT, None, al)
p2 = {inport:2}
pat2web = {in_port:2, tp src:80}
a2 = [forward(1)]
install(switch, pat2web, HIGH, None, a2)
install(switch, pat2, DEFAULT, None, a2)
query_stats(switch, pat2web)

Jojeaday

(

oHUOIN GaM

def stats _in(switch, p, bytes, ...):
print bytes
sleep(30)
query_stats(switch, p)

Must think about both tasks at the same time



Frenetic [ICFP '11, POPL "12]

Network Programming Language
» Streaming functional language—no events!
» Declarative semantics
« Separates reads (queries) from writes (policy)

Compiler and Run-time System

« Translates high-level programs to switches
« Automatically manages low-level resources




Frenetic By Example

Repeater

Forward from
port 1to 2 and
port2to 1

policy = [Rule(inport_fp(1), [forward(2)]),
Rule(inport_fp(2), [forward(1)])]

def repeater():
return \
(SwitchJoin() >>
Lift(lambda s:{s:policy}))

Policies have a declarative semantics
that is independent of other program pieces



Frenetic By Example

Manitor
incoming
web traffic

Forward from
port 1to 2 and
port2to 1

Repeater

policy = [Rule(inport_fp(1), [forward(2)]),
Rule(inport_fp(2), [forward(1l)])]

def repeater():
return \
(SwitchJoin() >>
Lift(lambda s:{s:policy}))

Web Monitor

def web _query():
return \
(Select(sizes) *
Where(inport_fp(2) & srcport_fp(80)) *
Every(30))

Queries have a declarative semantics
that is independent of other program pieces



Frenetic By Example

Repeater

policy = [Rule(inport_fp(1), [forward(2)]),
Rule(inport_fp(2), [forward(1l)])]

def repeater():
return \
(SwitchJoin() >>
Lift(lambda s:{s:policy}))

Web Monitor

Forward from
port 1to 2 and
port2to 1

incoming
web traffic

def web _query():
return \
(Select(sizes) *
Where(inport_fp(2) & srcport_fp(80)) *
Every(30))

Repeater + Web Monitor

def main():
web_query() >> Print()
repeater() >> Register()

Program pieces compose




Frenetic System Overview

High-level Language
« Declarative policies
- Integrated queries
» Effective support for composition

Compiler and Run-time System
» Translates policies and queries
- Manages forwarding rules
e Tracks statistics
« Handles asynchronous events

reneﬁc4
Loy
thioh
Register policies Query responses,
and queries topology changes
A,
enobckb

I’L%

Compile policies, Yen, Process events,

manage rules,
query counters

manage statistics
filter packets

Raw OpenFlow

" Raw OpenFlow
,
control messages
,

-
*, network events




Vision

(and Challenges)




Tony Hoare's “Mistake”

| call it my billion-dollar mistake.
It was the invention of the null reference in 1965.

My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement.

This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion
dollars of pain and damage in the last forty years.



Programming Language Abstractions

Many high-profile mistakes!

 Polymorphism + references
« Bounded quantification
 Pretty much every C compiler :-)




Programming Language Abstractions

Many high-profile mistakes!

 Polymorphism + references
« Bounded quantification
 Pretty much every C compiler :-)

5o language researchers have developed a body of (0,¢) = ¢
techniques for modeling and reasoning precisely ’ |
about language abstractions He]] P~ P

Operational semantics

Denotational semantics e — e el v
Axiomatic semantics

Bisimulations I'Fe:T



Programming Language Abstractions

Many high-profile mistakes! p

 Polymorphism + references §
« Bounded quantification =

« Pretty much every C compiler :-)

So language researchers have developed a body of
techniques for modeling and reasoning precisely

about language abstractions o ;
« QOperational semantics H ]] P
« Denotational semantics e — e el v
« Axiomatic semantics

e Bisimulations I'Fe:T

Proving “obvious” theorems often reveals bugs
Writing down a semantics is an efficient way to communicate ideas

A lot of effort has gone into making these techniques scalable!



Opportunities and Challenges




Opportunities and Challenges

SDNs offer a unigue opportunity to

- Define new abstractions for networks

- Develop their mathematical properties

- Design efficient implementations

- Deploy verification tools that provide assurance

and avoid (the analogues of ) Hoare's mistake!




Opportunities and Challenges

SDNs offer a unigue opportunity to

- Define new abstractions for networks

- Develop their mathematical properties

- Design efficient implementations

- Deploy verification tools that provide assurance

and avoid (the analogues of ) Hoare's mistake!

Challenge #2
- Want to program virtual networks
- Slices? Logical forwarding plane?
- Want to validate implementations,
prove isolation properties



Opportunities and Challenges

SDNs offer a unigue opportunity to

- Define new abstractions for networks

- Develop their mathematical properties

- Design efficient implementations

- Deploy verification tools that provide assurance

and avoid (the analogues of ) Hoare's mistake!

Challenge #1 Challenge #2
- Combining conflicting policies - Want to program virtual networks
- Constraint-based policies? - Slices? Logical forwarding plane?
- FML [Hinrichs+ '09] and - Want to validate implementations,

Cologne [Liu+ "12] prove isolation properties



Thank Youl

Collaborators

Shrutarshi Basu (Cornell)

Mike Freedman (Princeton)

Stephen Gutz (Cornell)

Rob Harrison (West Point) °

Chris Monsanto (Princeton) frenet'c >>
Joshua Reich (Princeton) |
Mark Reitblatt (Cornell)
Emin GUn Sirer (Cornell)
Cole Schlesinger (Princeton)
Alec Story (Cornell)

Jen Rexford (Princeton)
David Walker (Princeton)

http://frenetic-lang.org

Funding

o @ @



