Coding Theorems for Reversible Embedding

Frans Willems and Ton Kalker T.U. Eindhoven, Philips Research

DIMACS, March 16-19, 2003

Outline

- 1. Gelfand-Pinsker coding theorem
- 2. Noise-free embedding
- 3. Reversible embedding
- 4. Robust and reversible embedding
- 5. Partially reversible embedding
- 6. Remarks

I. The Gelfand-Pinsker Coding Theorem

. $\{W, \dots, 2, 1\} \ni w$ for $w \in \{1, 2, \dots, M\}$. Messages: Pr $\{W = w\}$

 $\cdot^N X \ni {}^N x$ for $(nx) {}^s q {}^{1=n} \Pi = \{ {}^N x = {}^N X \}$ in the information of $(nx) {}^s q {}^{1=n} \Pi = \{ {}^N x = {}^N X \}$

Error probability: $P_{\mathcal{E}} = \Pr\{\widehat{W} \neq \widehat{W}\}$.

 $\{\mathcal{Z}, (x,y|z) \in \mathcal{X} \times \mathcal{X}\}$ seanoryless for the memory of the second states of the secon

Rate: $R = \frac{1}{N} \log_2(M)$.

Capacity

The **side-information capacity** C_{s_i} is the largest p such that for all $\epsilon > 0$ there exist for all large enough N encoders and decoders with $R \ge p - \epsilon$ and $P_{\mathcal{E}} \le \epsilon$.

THEOREM (Gelfand-Pinsker [1980]):

(1)
$$(X;U)I - (Z;U)I \underset{(x|y,u)_{t}^{t}}{\operatorname{xem}} = {}^{\mathrm{i}}{\mathrm{s}}O$$

Achievability proof: Fix a test-channel $P_t(u, y|x)$. Consider sets $\mathcal{A}_{\epsilon}(\cdot)$ of strongly typical sequences, etc.

(a) For each message index $w \in \{1, \dots, 2^{NR}\}$, generate 2^{NR_u} sequences u^N at random according to $P(u) = \sum_{x,y} P_s(x) P_t(u,y|x)$. Give these sequences the label w.

(b) When message index w has to be transmitted choose a sequence w with w such that $(w, x^N) \in \mathcal{A}_{\epsilon}(U, X)$. Such a sequence exists almost always if $\mathcal{R}_u > I(U; X)$ (roughly).

(c) The input sequence y^N results from applying the " channel" $P(y|u, x) = P_k(y, u|x) / \sum_y P_k(u, y|x)$ to u^N and x^N . Then y^N is transmitted.

(d) The decoder upon receiving z^N , looks for the unique sequence u^N such that $(u^N, z^N) \in \mathcal{A}_{\epsilon}(U, Z)$. If $R + R_u < I(U; Z)$ (roughly) such a such that $(u^N, z^N) \in \mathcal{A}_{\epsilon}(U, Z)$.

.9Idevaidse si (X;U)I - (Z;U)I > R tent si noisulsno

Observations

. As an intermediate result the decoder recovers the sequence \mathbf{N}_N .

B: The transmitted u^N is jointly typical with the side-info sequence x^N , i.e. $(u, v^N) \in \mathcal{A}_{\epsilon}(U, x)$ thus their joint composition is OK. Note that $P(u, x) = \sum_y P_s(x)P_t(u, y|x)$.

II. Noise-free Embedding

 $\mathsf{Messages:} \ \mathsf{Pr}\{W = w\} = \frac{1}{M} \text{ for } w \in \{1, 2, \cdots, M\}.$

 $\cdot_N \mathcal{X} \ni {}_N x$ Joj $(ux)^s d^{N' t = u} \square = \{ {}_N x = {}_N X \}$ Jd :(1sou) advised the source (1sou) and (1sou) advised to the second determined by the second determined determined determined by the second determine

Error probability: $P_{\mathcal{E}} = \Pr\{\overline{W} \neq W\}$.

Rate: $R = \frac{1}{N} \log_2(M)$.

Embedding distortion: $\overline{D}_{xy} = E[\frac{1}{N}\sum_{n=1,N} D_{xy}(X_{n}, e_{n}(W, X^{N}))]$ for some distortion matrix $\{D_{xy}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Achievable region noise-free embedding

A rate-distortion pair (p, Δ_{xy}) is said to be achievable if for all $\epsilon > 0$ there exists for all large enough N encoders and decoders such that

$$\begin{array}{rcl}
 B^{\mathcal{E}} & \in & \epsilon \\
 \underline{D^{xh}} & \leq & \nabla^{xh} + \epsilon^{\lambda} \\
 \underline{B} & \geq & b - \epsilon^{\lambda}
\end{array}$$

THEOREM (Chen [2000], Barron [2000]): The set of achievable vate-distortion pairs is equal to \mathcal{G}_{nfe} which is defined as

$$\mathcal{G}_{\mathsf{nfe}} = \{(\rho, \Delta_{xy}) : 0 \le \rho \le H(Y|X), \\ \Delta_{xy} \ge \sum_{y,y} P(x,y) D_{xy}(x,y), \\ \text{for } P(x,y) = P_s(x) P_t(y|x)\}.$$
(2)

.lennedo-test belled si $\{\mathcal{V}, (x|y)_{t}^{j}Q, \mathcal{X}\}$ niegA

Proof:

Achievability: In the Gelfand-Pinsker achievability proof, note that Z = Y. Y (noiseless channel) and take the auxiliary random variable U = Y. Then $(x^N, y^N) \in \mathcal{A}_{\epsilon}(X, Y)$ hence $\overline{D_{xy}}$ is OK. For the embedding rate we obtain

$$.(X|Y)H = (X;Y)I - (Y;Y)I = (X;U)I - (Z;U)I = A$$

Converse: Rate part:

$$\begin{array}{lll} & \displaystyle | \mathrm{OG}_2(M) & \displaystyle \leq & H(X^N|X^N) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_1(X^N) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_1(X^N) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_1(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fano} \ \mathrm{term} \\ & \displaystyle | \mathrm{CW}_2(M) + \mathrm{Fa$$

$$\leq \sum_{\substack{N, \mathcal{I} = n \\ X \mid X \mid X}} H(X|X) + Fano term,$$

Let $P_{\mathcal{E}} \downarrow 0$, etc.

$$= \sum_{N,n}^{h \cdot x} \Pr\{(X, Y) = (X, Y)\} D_{Xy}(X, y)$$

$$= \sum_{N,n}^{h \cdot x} \Pr\{(X, X) = (X, Y)\} D_{Xy}(X, y)$$

Distortion part:

$$Pr\{X = x\} = P_s(x).$$

for $x \ni x$ and $y \in \mathcal{Y}$. Note that for $x \ni x$ not

$$\Pr\{(y, x) = (n^{X}, n^{X})\} = \frac{1}{2} \sum_{N, t=n} \frac{1}{2} = \{(y, x) = (X, X)\}$$

where X and Y are random variables with

III. Reversible Embedding

 $Messages: Pr\{W = w\} = \frac{1}{M} \text{ for } w \in \{1, 2, \dots, M\}.$

 $\cdot_N \mathcal{X} \ni {}_N x$ Jol $(ux)^s d^{N' t = u} \sqcup = \{ {}_N x = {}_N X \}$ Jd :(1sou) source

 $\mathsf{Error probability: } P_{\mathcal{E}} = \mathsf{Pr}\{\widehat{W} \neq W \lor \widehat{X}^{N} \neq X^{N}\}.$

Rate: $R = \frac{1}{N} \log_2(M)$.

Embedding distortion: $\overline{D}_{xy} = E[\frac{1}{N}\sum_{n=1,N} u_{xy}(X_n, e_n(X_n, e_n(W, X^N))]$ for some distortion matrix $\{D_{xy}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Inspired by Fridrich, Goljan, and Du, "Lossless data embedding for all image formats," Proc. SPIE, Security and Watermarking of Multimedia Contents, San Jose, CA, 2002.

Achievable region for reversible embedding

A rate-distortion pair (p, Δ_{xy}) is said to be achievable if for all $\epsilon > 0$ there exists for all large enough N encoders and decoders such that

$$\begin{array}{rcl}
B^{\mathcal{E}} & \in & \epsilon^{\cdot} \\
\frac{D^{xh}}{B} & \leq & \nabla^{xh} + \epsilon^{\cdot} \\
\frac{B^{xh}}{B} & \leq & b - \epsilon^{\cdot}
\end{array}$$

RESULT (Kalker-Willems [2002]): The set of achievable rate-distortion

$$\mathcal{G}_{\text{re}} = \{(\rho, \Delta_{xy}) : 0 \leq \rho \leq H(Y) - P_s(x) P_t(y|x)\}.$$
(3)
$$\mathcal{G}_{\text{re}} = \{(\rho, \Delta_{xy}) : 0 \leq \rho \leq H(Y) - H(X), (X)\}.$$

. Ionnaho test oht si $\{\mathcal{V}, (x|y)_{t}^{j} Q, \mathcal{X}\}$ tent of \mathcal{V}

:1001**9**

Achievability: In the Gelfand-Pinsker achievability proof, note that Z = Y (noiseless channel) and take the auxiliary random variable U = [X, Y]. Then x^N can be reconstructed by the decoder and $(x^N, y^N) \in \mathcal{A}_{\epsilon}(X, Y)$ hence \overline{D}_{xy} is OK. For the embedding rate we obtain

$$H = I(U; Z) - I(V; X) = I(X; X]) - I(X; X]) = (X; U) - (Z; U) = H$$

Converse: Rate part:

$$\begin{split} \log_2(M) &\leq H(W) - H(W, X^N | \tilde{Y}, \tilde{X}_1^N) + \mathsf{F} \text{ano term} \\ &= H(W, X^N) - H(W, X^N | \tilde{Y}, \tilde{Y}, \tilde{W}, \tilde{X}_1^N) - H(X^N) + \mathsf{F} \text{ano term} \\ &\leq M(W, X^N) - H(W, X^N) + \mathsf{F} \text{ano term} \\ &\leq M(W, X^N) - H(X^N) + \mathsf{F} \text{ano term} \\ &\leq M(W, X^N) - H(X^N) + \mathsf{F} \text{ano term} \\ &\leq M(W, X^N) - H(X^N) + \mathsf{F} \text{ano term} \\ &\leq M(W, X^N) + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(X)] + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(X)] + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(X)] + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(X)] + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(X)] + \mathsf{F} \text{ano term} \\ &\leq M[H(Y) - H(Y)] + \mathsf{F} \text{ano term} \\ &\leq M[H($$

Let $P_{\mathcal{E}} \downarrow 0$, etc.

$$= \sum_{N,n',N'} \Pr\{(X,Y) = (x,y)\} D_{Xy}(x,y).$$

$$= \sum_{N,n',N'} \Pr\{(X,N) = (x,y')\} D_{Xy}(x,y).$$

Distortion part:

$$Pr\{X = x\} = P_s(x).$$

for $x \ni x$ and $y \in \mathcal{Y}$. Note that for $x \ni x$ not

$$\Pr\{(v, x) = (n^{X}, n^{X})\} = \frac{1}{2} \sum_{N, t=n} \frac{1}{2} = \{(v, x) = (X, X)\}$$

where X and Y are random variables with

Example: Binary source, Hamming distortion

Since

$$\Delta_{yy} = p_x(1-z) + (z-z) + p_x q \leq y = y = 0$$

we can write

$$p_y \leq \Delta_{xy} + p_x (1 - 2d_1).$$

Assume w.l.o.g. that $p_x \le 1/2$. First let Δ_{xy} be such that $\Delta_{xy} + p_x \le 1/2$. Or $\Delta_{xy} \le 1/2 - p_x$. Then we have

 $b^{\hat{n}} \leq \nabla^{x\hat{n}} + b^x \leq \Im \setminus \Sigma'$

However $p = h(p_x + \Delta_{xy}) - h(p_x) \leq h(p_x + \Delta_{xy}) - h(p_x)$ is achievable with Δ_{xy} by taking

$$\cdot \frac{xd - \tau}{hx} = 0p \quad \text{pue} \quad 0 = \tau p$$

Note that the test channel is not symmetric and that

$$q_0 = \frac{1 - p_x}{\nabla^{x\eta}} \le \frac{1 - p_x}{1/2 - p_x} \le 1/2$$

For $\Delta_{xy} + p_x \ge 1/2$ the rate is bounded as $p \le 1 - h(p_x)$ but also achievable.

Plot of rate-distortion region Gre

Horizontal axis Δ_{xy} , vertical axis p, for $p_x = 0.2$. Maximum embedding rate $1 - \hbar(0.2) \approx 0.278$.

Another perspective

Consider a blocked system with blocks of length N. In block k message bits can be (noise-free) embedded with rate H(Y|X) and corresponding distortion.

Then in block k + 1 message bits are embedded that allow for reconstruction of $x^N(k)$ given $y^N(k)$. This requires NH(X|Y) bits. Therefore the resulting embedding rate is

$$= H(X) - H(X).$$

$$= H(X, Y) - H(X) - H(X) - H(X|X)$$

$$= H(X|X) - H(X|X)$$

Embedding distortion: $\overline{D}_{xy} = E[\frac{1}{N} \sum_{n=1,N} u_{xy}(X_n, e_n(X_n, e_n(W, X^N))]$ for some distortion matrix $\{D_{xy}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Rate: $R = \frac{1}{N} \log_2(M)$.

 $\mathsf{Error probability: } P_{\mathcal{S}} = \mathsf{Pr}\{\widehat{W} \neq W \forall \widehat{X} \lor W \neq \widehat{W}\}$

. $\{\mathcal{I}, P_{o}(z|y), \mathcal{I}\}$ discrete memoryless $\{\mathcal{Y}, P_{o}(z|y), \mathcal{Z}\}$.

 $\cdot_N \mathcal{X} \ni {}_N x$ for $(ux)^s d^{N' t = u} \square = \{ {}_N x = {}_N X \}$ is the formula of $(x = u)^s d^{N' t = u} \square = \{ {}_N x = {}_N X \}$

 $\{M, \dots, 2, 1\} \ni w$ for $w \in \{1, 2, \dots, M\}$.

IV. Robust and Reversible Embedding

Achievable region for robust and reversible embedding

A rate-distortion pair (ρ, Δ_{xy}) is said to be achievable if for all $\epsilon > 0$ there exists for all large enough N encoders and decoders such that

$$\begin{array}{rcl}
 & & & & & & \\ B^{\mathcal{E}} & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

RESULT (Willems-Kalker [2003]): The set of achievable rate-distortion

$$\mathcal{G}_{\text{rre}} = \{(\rho, \Delta_{xy}) : 0 \leq \rho \leq I(Y; Z) - H(X), P_{c}(y|x) P_{c}(z|y)\}.$$

$$(4)$$

$$\mathcal{G}_{\text{rre}} = \{(\rho, \Delta_{xy}) : 0 \leq \rho \leq I(Y; Z) - H(X), P_{c}(y|x) P_{c}(z|y)\}.$$

Proof:

Achievability: In the Gelfand-Pinsker achievability proof again take the auxiliary random variable U = [X, Y]. Then x^N can be reconstructed by the decoder and since $(x^N, y^N) \in \mathcal{A}_{\epsilon}(X, Y)$ the embedding distortion \overline{D}_{xy} is OK. For the embedding rate we obtain

$$(X)H - (Z;Y)I = (X;[Y,X])I - (Z;[Y,X])I = (X;U)I - (Z;U)I = H$$

Converse: Rate part:

$$\begin{split} \log_2(M) &\leq H(W, X^N) - H(W, X^N) + \mathsf{Fano term} \\ &= I(Y^N; Z^N) - H(W, X^N) + \mathsf{Fano term} \\ &= I(W, X^N) - H(W, X^N) + \mathsf{Fano term} \\ &\leq H(W, X^N) - H(W, X^N) + \mathsf{Fano term} \\ &\leq H(W, X^N) - H(W, X^N) + \mathsf{Fano term} \\ &\leq I(W, X^N) - \mathsf{H}(X^N) + \mathsf{Fano term} \\ &\leq I(W, X^N) + I(W, X^N) + \mathsf{Fano term} \\ &\leq I(W, X^N) + I(W, X^N$$

$$\leq \sum_{\substack{N, I = n \ N, I = n}} [I(Y; Z_n) - H(X)] + Fano term, \leq M[I(Y; Z_n) - H(X)] + Fano term,$$

where X, X and Z are random variables with

$$\Pr\{(z, y, x) = (nZ, nX, nX)\} = \frac{1}{2} \sum_{N, z=n} \Pr\{(X, y, z) = (Z, Y, X)\}$$

for $x \in \mathcal{X}$, $y \in \mathcal{Y}$, and $z \in \mathcal{Z}$. Note that for $x \in \mathcal{X}$

$$\Pr\{X = x\} = P_s(x).$$

 $\mathcal{Z}
i z$ pue $\mathcal{V}
i \mathcal{V}
i \mathcal{V}$ and for

$$\Pr\{Z = z | Y = y\} = P_c(z|y).$$

Distortion part:

$$= \sum_{\substack{N, y, y \\ N}} \Pr\{(X, Y) = (x, y)\} D_{xy}(x, y).$$

$$= \sum_{\substack{N, y, y \\ N}} \Pr\{(X, X) = (x, y)\} D_{xy}(x, y).$$

Let $P_{\mathcal{E}} \downarrow 0$, etc.

Example: Binary source, Hamming distortion, binary

Similar analysis as before.

Plot of achievable region Gree

Horizontal axis Δ_{xy} , vertical axis p for $p_x = \alpha = 0.1$. Minimal distortion ≈ 0.218 , maximum embedding rate $1 - h(0.1) - h(0.1) \approx 0.062$.

The zero-rate case: Robustification

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

 $\cdot_N \mathcal{X} \ni {}_N x$ Joj $(ux)^s d^{N' t = u} \square = \{ {}_N x = {}_N X \}$ Jd :(1sou) a) a) source

. $\{\mathcal{I}, (y|z), \mathcal{I}, \mathcal{I}\}$ sealy nemoryless for the memoryless $\{\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I}\}$.

Error probability: $P_{\mathcal{S}} = \Pr\{X \neq X^{\mathsf{I}}\}$

Robustification distortion: $\overline{D}_{xy} = E[\frac{1}{N} \sum_{n=1,N} D_{xy}(X_n, e_n(W, X^N))]$ for some distortion matrix $\{D_{xy}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Achievable distortions for robustification

A distortion Δ_{xy} is said to be achievable if for all $\epsilon>0$ there exists for all large enough N encoders and decoders such that

$$D^{\mathcal{E}} \stackrel{\mathcal{E}}{=} \frac{\epsilon}{\nabla} \cdot \nabla^{x^{\mathcal{H}}} + \epsilon^{\mathcal{E}}$$

RESULT: The set of achievable distortions is equal to \mathcal{G}_{rob} which is defined as

$$\mathcal{G}_{\mathsf{rob}} = \{ \Delta_{xy} : \Delta_{xy} \geq \sum_{x,y} P(x,y) D_{xy}(x,y) \}.$$
(5)
$$\mathcal{G}_{\mathsf{rob}} = \{ \Delta_{xy} : \Delta_{xy} \geq \sum_{x,y} P(x,y) D_{xy}(x,y) \}.$$

Related to Shannon's separation principle ! Robustification is not possible if $H(X) > \max_{P_t(y)} I(Y; Z)$.

V. Partially Reversible Embedding

. $\{M, \dots, 2, 1\} \ni w$ for $w \in \{1, 2, \dots, M\}$.

 $\cdot_N \mathcal{X} \ni {}_N x$ Joj $(ux)^s d^{N' t = u} \square = \{ {}_N x = {}_N X \}$ Jd :(1sou) source

Error probability: $P_{\mathcal{E}} = \Pr\{\tilde{W} \neq W\}$.

Rate: $R = \frac{1}{N} \log_2(M)$.

Embedding distortion: $\overline{D}_{xy}(x,y), x \in \mathcal{X}, y \in \mathcal{Y}$. distortion matrix $\{D_{xy}(x,y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Restoration matrix $\{D_{xv}(x,v), x \in \mathcal{X}, z \in \mathcal{V}\}$. Fortion matrix $\{D_{xv}(x,v), x \in \mathcal{X}, z \in \mathcal{V}\}$.

Achievable region for partially reversible embedding

A rate-distortion triple $(p, \Delta_{xy}, \Delta_{xy})$ is said to be achievable if for all $\epsilon > 0$ there exists for all large enough N encoders and decoders such that

$$\begin{array}{rcl}
 & & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$$

triples is given by G_{pre} which is defined as

$$\mathcal{G}_{\mathsf{Pre}} = \{(\rho, \Delta_{xy}, \Delta_{xv}) : 0 \le \rho \le H(Y) - I(X; Y, v) D_{xv}(y, v|X), \dots D_{xv}(x, v), \dots D_{xv}(x, v), \dots D_{xv}(x, v), \dots D_{xv}(x, v), \dots Q_{xv}(x, v), \dots, \dots Q_{xv}(x, v), \dots Q_{xv}(x, v), \dots Q_{xv}$$

50

Proof:

Converse: Rate part:

Achievability: In the Gelfand-Pinsker achievability proof, note again that Z = Y (noiseless channel) and take the auxiliary random variable U = [Y, V]. Then v^N can be reconstructed by the decoder and since $(x^N, y^N, v^N) \in \mathcal{A}_{\epsilon}(X, Y, V)$ both $\overline{D_{xy}}$ and $\overline{D_{xv}}$ are OK. For the embedding rate we obtain

$$H = I(\Lambda X X)I - (X H = (X [\Lambda X])I - (X [\Lambda X])I = (X L)I - (Z L)I = H$$

$$\begin{split} \log_2(M) &= M[Y^N, V^N, W) - H(X^N, V^N) + Fano \ \text{term} \\ &= N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq V[H(Y) - H(X^N) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq M[Y^N) - H(X^N) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq M[Y^N) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, V^N) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^N, W) + H(X^N, W) + H(X^N, W) + Fano \ \text{term} \\ &\leq N[H(Y) - H(X^N, W) + H(X^$$

where X, X and V are random variables with

$$\Pr\{(v, v, x) = (n^{N}, n^{N})\} = \frac{1}{2} \sum_{N, I=n} \Pr\{(X, N, N) = (V, Y, N)\}$$

for $x \in \mathcal{X}$, $y \in \mathcal{Y}$, and $v \in \mathcal{V}$. Note that for $x \in \mathcal{X}$

$$\Pr\{X = x\} = \{x = X\}$$

Distortion parts:

$$(u_{n}, u_{x})_{yx} = \sum_{n} \Pr\{(x, y, x) = (x, y)\} = (x, y, y) = \sum_{n} \Pr\{(x, y, y) = (x, y)\} D_{xy}(x, y).$$

$$(u_{n}, u_{x})_{yy} = \sum_{n} \Pr\{(X, y) = (x, y)\} D_{xy}(x, y).$$

$$(u_{v}, n_{x}) = \sum_{u_{v}, v_{v}} \Pr\{(X, V) = (x, v)\} D_{xv}(x, v).$$

$$= \sum_{u_{v}, v_{v}} \Pr\{(X, V) = (x, v)\} D_{xv}(x, v).$$

The other perspective again

 $(X|A : X)I - (X|X)H = \mathcal{H}$

Consider a blocked system with blocks of length N. In block k a message can be (noise-free) embedded with rate H(Y|X) and the corresponding distortion.

Then in block k + 1 data is embedded that specifies a restoration sequence $v^N(k)$ given $y^N(k)$. This requires NI(X; V|Y) bits. Therefore the remaining embedding rate is

$$(\Lambda' X | X) H + (X | X) H - (X | X) H =$$

$$(A'X'X)I - (X)H = (A'X|X)H + (X)H - (X)H =$$

The zero-rate case: Self-Embedding

 $\cdot^{N} X \ni {}^{N} x$ for $(nx) {}^{s} q {}^{N, t} = n \Pi = \{ {}^{N} x = {}^{N} X \}$ is the formula of $(nx) {}^{s} q {}^{N, t} = n \Pi$.

Embedding distortion: $\overline{D}_{xy} = \mathcal{E}[\frac{1}{N} \sum_{n=1,N} D_{xy}(X_n, \mathfrak{C}_n(W, X^N))]$ for some distortion matrix $\{D_{xy}(x, y), x \in \mathcal{X}, y \in \mathcal{Y}\}$.

Restoration distortion: $\overline{D}_{xv} = E[\frac{1}{N}\sum_{n=1,N} D_{xv}(X_n, f_n(Y_n))]$ for a distortion matrix $\{D_{xv}(x,v), x \in \mathcal{X}, z \in \mathcal{V}\}$.

Achievable distortions for self-embedding

A distortion pair $(\Delta_{xy}, \Delta_{xy})$ is said to be achievable if for all $\epsilon > 0$ there exists for all large enough N encoders and decoders such that

$$\frac{D^{xn}}{D^{x\lambda}} \leq \nabla^{xn} + \epsilon^{\cdot}$$

pairs is equal to \mathcal{G}_{se} which is defined as

$$\mathcal{G}_{\mathsf{Se}} = \{ (\Delta_{xy}, \Delta_{xv}) : \Delta_{xy} \ge \sum_{\substack{x,y,v \\ x,y,v}} P(x,y,v) D_{xy}(x,y,v), \\ \Delta_{xv} \ge \sum_{\substack{x,y,v \\ x,y,v}} P(x,y,v) D_{xv}(x,v), \\ \text{for } P(x,y,v) = P_s(x) P_t(y,v|x), \\ \text{for } P(x,y,v) \ge I(X;Y,V) \}.$$
(7)

Self-embedding is putting a vector quantizer into a scalar quantizer. Or making an abstract index to a restoration vector \boldsymbol{v}^N meaningful.

VI. Remarks

- Dur results are related to results of Sutivong, Cover, et al. Slightly different setups however. Embedding distortion.
- We cannot do the partially reversible AND robust case. An achievable region would be similar to the Sutivong, Cover, Chiang, Kim [2002]
- 3. Coding techniques for the reversible case have been studied (with Deran Maas [2002]).
- 4. Open problems: (A) Arimoto-Blahut methods to compute the ratedistortion functions, (B) Coding techniques, especially for the zerorate cases.