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Gaussian Multiterminal Source Coding
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Quadratic Gaussian CEO Problem
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Result: Quadratic Gaussian CEO

• quadratic distortion metric d (n, n̂) = (n− n̂)2

• For large number of encoders K,
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– Second term is loss w.r.t. cooperating encoders



Outline

• Problem Formulation:

Tradeoff between sum rate R and distortion

(metric d (n, n̂)).

• Main Result:

Characterize a class of distortion metrics for which no loss

in sum rate compared with encoder cooperation

– A multiple antenna test channel



Random Binning of Slepian-Wolf
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• Rate is number of quantizers



Encoding in Slepian-Wolf
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• Quantizer closest to realization



Decoding in Slepian-Wolf

• Decoder knows joint distribution of y1, y2

• It is given the two quantizer numbers from the encoders

• Picks the pair of points in the quantizers which best matches

the joint distribution

– For jointly Gaussian y1, y2 nearest neighbor type test

• R1 + R2 = H (y1, y2) is sufficient for zero distortion



Deterministic Broadcast Channel

y2 = g(x)

x

y1 = f(x)

• Pick distribution on x such that y1, y2 have desired joint dis-

tribtion (Cover 98)



Slepian-Wolf code for Broadcast Channel

• Encoding: implement Slepian-Wolf decoder

– given two messages, find the appropriate pair y1, y2 in the

two quantizers

– transmit x that generates this pair y1, y2.



Slepian-Wolf code for Broadcast Channel

• Encoding: implement Slepian-Wolf decoder

– given two messages, find the appropriate pair y1, y2 in the

two quantizers

– transmit x that generates this pair y1, y2.

• Decoding: implement Slepian-Wolf encoder

– quantize y1, y2 to nearest point

– messages are the quantizer numbers



Lossy Slepian-Wolf Source Coding
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• Approximate y1, y2 by u1, u2



Lossy Slepian-Wolf Source Coding

• Encoding: Find ui that matches source yi, separately for

each i

– For jointly Gaussian r.v. s, nearest neighbor calculation

– Each encoder sends quantizer number containing the u

picked



Lossy Slepian-Wolf Source Coding

• Encoding: Find ui that matches source yi, separately for
each i

– For jointly Gaussian r.v. s, nearest neighbor calculation

– Each encoder sends quantizer number containing the u

picked

• Decoding: Reconstruct the u’s picked by the encoders

– reconstruction based on joint distribution of u’s

– Previously ui = yi were correlated

– Here u’s are independently picked



Lossy Slepian-Wolf

• We require

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]



Lossy Slepian-Wolf

• We require

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]

• Generate n̂1, . . . , n̂K deterministically from reconstructed u’s.

• Need sum rate

Rsum = I (u1, . . . , uK; y1, . . . , yK) .

• Distortion equal to

E [d (n, n̂)] .



Marton Coding for Broadcast Channel
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• Reversed encoding and decoding operations

• Sum rate I (u1, . . . , uK; y1, . . . , yK) .

• No use for the Markov property

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]



Achievable Rates: Costa Precoding
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• Users’ data modulated onto spatial signatures u1,u2



Stage 1: Costa Precoding
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• Encoding for user 1 treating signal from user 2 as known

interference at transmitter



Stage 2
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• Encode user 2 treating signal for user 1 as noise



Adaptation to Lossy Slepian-Wolf
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• Joint distribution of u’s and y’s depends on noise z

• Performance independent of correlation in z



Noise Coloring

• Fix particular Costa coding scheme - fixes u’s and x.

• Idea:

Choose z such that

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]

and (Kz)ii = 1

• Then can adapt to Lossy Multiterminal Source Coding



Markov Condition and Broadcast Channel

• The Markov condition

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]

of independent interest in the broadcast channel
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• The Markov condition
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Markov Condition and Broadcast Channel

• The Markov condition

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p [ui|yi]

of independent interest in the broadcast channel

•

p [u1, . . . , uK|y1, . . . , yK] = ΠK
i=1p

[
ui|y1, . . . , yK, u1, u2, . . . , ui−1

]

• Equivalent to: given u1, . . . , ui−1

ui −→ yi −→ y1, . . . , yi−1, yi+1, . . . , yK



Implication
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• Need only y1 to decode u1

• Given u1, need only y2 to decode u2

Performance of Costa scheme equals that when receivers

cooperate



Markov Condition and Noise Covariance

• The sum capacity is also achieved by such a scheme

(CS 01, YC 01, VT 02, VJG 02)

• For every Costa scheme, there is a choice of Kz such that

Markov condition holds (Yu and Cioffi, 01)
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Gaussian Multiterminal Source Coding
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Main Result

• Distortion metric

d (n; n̂) =
1

N
(n− n̂)t

(
I + Hdiag {p1, . . . , pK}Ht

)
(n− n̂)

– Here p1, . . . , pK - powers of users in reciprocal MAC

• Rate distortion function

R(D) = Sum rate of MAC−N logD

= Sum rate of Broadcast Channel−N logD

= logdet
(
I + HDHt

)
−N logD



Bells and Whistles

• For quadratic distortion metric

d (n; n̂) =
1

N
(n− n̂)t (n− n̂)

set of H can be characterized

• Analogy with CEO problem:

For large number of encoders and random H

characterization of R(D) almost surely



Discussion

• A “connection” made between coding schemes for multiter-

minal source and channel coding



Discussion

• A “connection” made between coding schemes for multiter-

minal source and channel coding

• Connection somewhat superficial

– relation between source coding and broadcast channel

through a common random coding argument (PR 02, CC

02)

– relation between source coding and multiple access chan-

nel through a change of variable (VT 02, JVG 01)



Discussion

• A “connection” made between coding schemes for multiter-
minal source and channel coding

• Connection somewhat superficial

– relation between source coding and broadcast channel
through a common random coding argument

– relation between source coding and multiple access chan-
nel through a change of variable

• Connection is suggestive

– a codebook level duality


