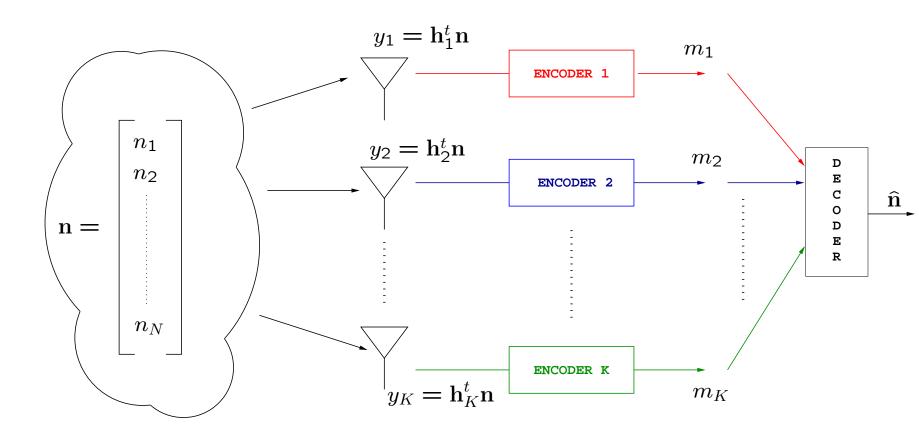
Sum Rate of Gaussian Multiterminal Source Coding

Pramod Viswanath University of Illinois, Urbana-Champaign

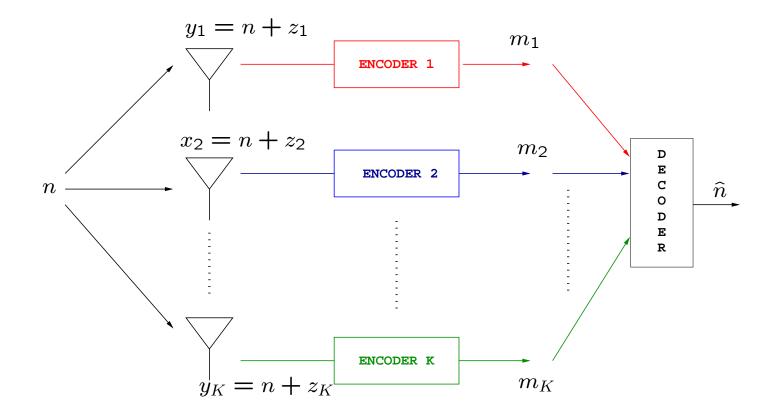
March 19, 2003

Gaussian Multiterminal Source Coding



Sum of rates of encoders R and distortion metric $d(\mathbf{n}, \hat{\mathbf{n}})$

Quadratic Gaussian CEO Problem



Sum of rates of encoders R and distortion metric $d(n, \hat{n})$

Result: Quadratic Gaussian CEO

- quadratic distortion metric $d(n, \hat{n}) = (n \hat{n})^2$
- For large number of encoders K,

$$R(D) = \frac{1}{2}\log^+\left(\frac{\sigma_n^2}{D}\right) + \frac{\sigma_z^2}{2\sigma_n^2}\left(\frac{\sigma_n^2}{D} - 1\right)^+$$

- Second term is loss w.r.t. cooperating encoders

Outline

• Problem Formulation:

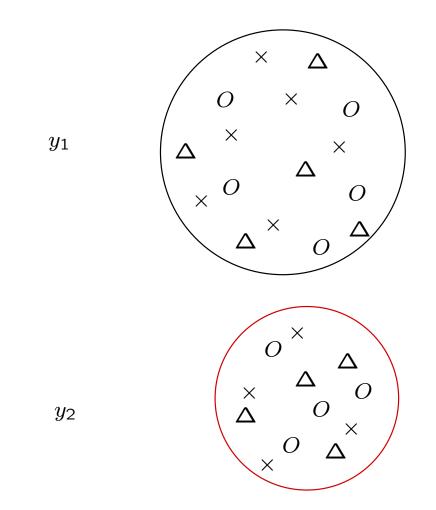
Tradeoff between sum rate R and distortion (metric $d(\mathbf{n}, \hat{\mathbf{n}})$).

• Main Result:

Characterize a class of distortion metrics for which no loss in sum rate compared with encoder cooperation

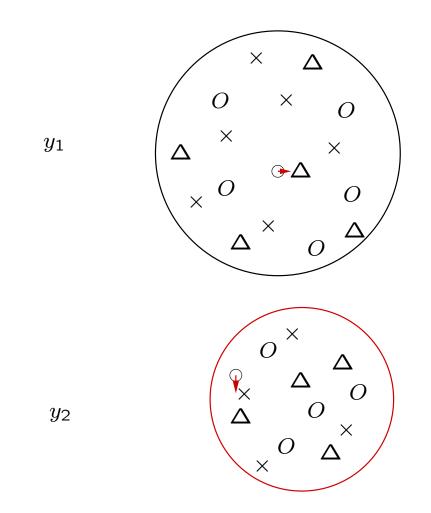
A multiple antenna test channel

Random Binning of Slepian-Wolf



• Rate is number of quantizers

Encoding in Slepian-Wolf

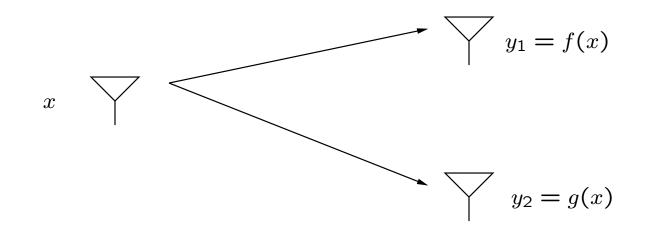


• Quantizer closest to realization

Decoding in Slepian-Wolf

- Decoder knows joint distribution of y_1, y_2
- It is given the two quantizer numbers from the encoders
- Picks the pair of points in the quantizers which best matches the joint distribution
 - For jointly Gaussian y_1, y_2 nearest neighbor type test
- $R_1 + R_2 = H(y_1, y_2)$ is sufficient for zero distortion

Deterministic Broadcast Channel



• Pick distribution on x such that y_1, y_2 have desired joint distribution (Cover 98)

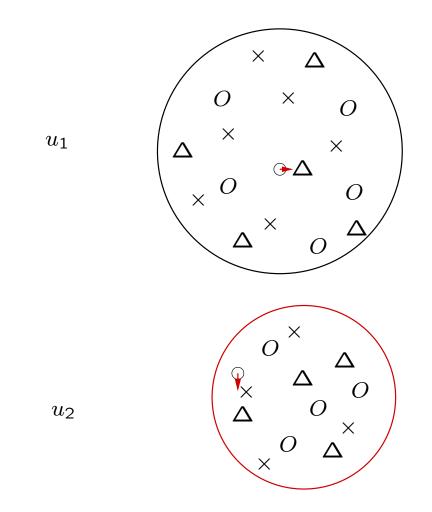
Slepian-Wolf code for Broadcast Channel

- Encoding: implement Slepian-Wolf decoder
 - given two messages, find the appropriate pair y_1, y_2 in the two quantizers
 - transmit x that generates this pair y_1, y_2 .

Slepian-Wolf code for Broadcast Channel

- Encoding: implement Slepian-Wolf decoder
 - given two messages, find the appropriate pair y_1, y_2 in the two quantizers
 - transmit x that generates this pair y_1, y_2 .
- Decoding: implement Slepian-Wolf encoder
 - quantize y_1, y_2 to nearest point
 - messages are the quantizer numbers

Lossy Slepian-Wolf Source Coding



• Approximate y_1, y_2 by u_1, u_2

Lossy Slepian-Wolf Source Coding

- Encoding: Find u_i that matches source y_i , separately for each i
 - For jointly Gaussian r.v. s, nearest neighbor calculation
 - Each encoder sends quantizer number containing the \boldsymbol{u} picked

Lossy Slepian-Wolf Source Coding

- Encoding: Find u_i that matches source y_i , separately for each i
 - For jointly Gaussian r.v. s, nearest neighbor calculation
 - Each encoder sends quantizer number containing the \boldsymbol{u} picked
- Decoding: Reconstruct the u's picked by the encoders
 - reconstruction based on joint distribution of u's
 - Previously $u_i = y_i$ were correlated
 - Here *u*'s are independently picked

Lossy Slepian-Wolf

• We require

$$p[u_1, \ldots, u_K | y_1, \ldots, y_K] = \prod_{i=1}^K p[u_i | y_i]$$

Lossy Slepian-Wolf

• We require

$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_i]$$

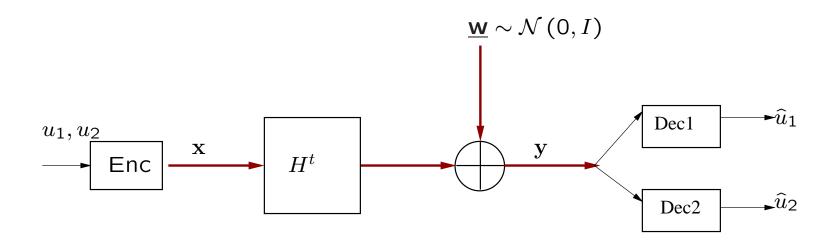
- Generate $\hat{n}_1, \ldots, \hat{n}_K$ deterministically from reconstructed *u*'s.
- Need sum rate

$$R_{\text{sum}} = I(u_1, \ldots, u_K; y_1, \ldots, y_K).$$

• Distortion equal to

 $E\left[d\left(\mathbf{n},\widehat{\mathbf{n}}\right)\right].$

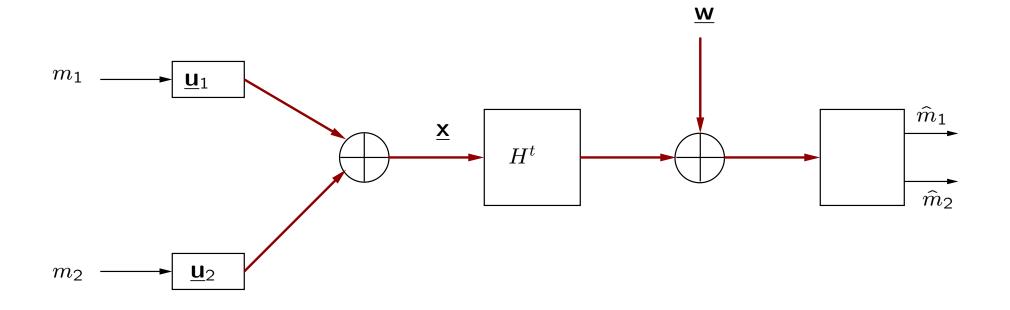
Marton Coding for Broadcast Channel



- Reversed encoding and decoding operations
- Sum rate $I(u_1, ..., u_K; y_1, ..., y_K)$.
- No use for the Markov property

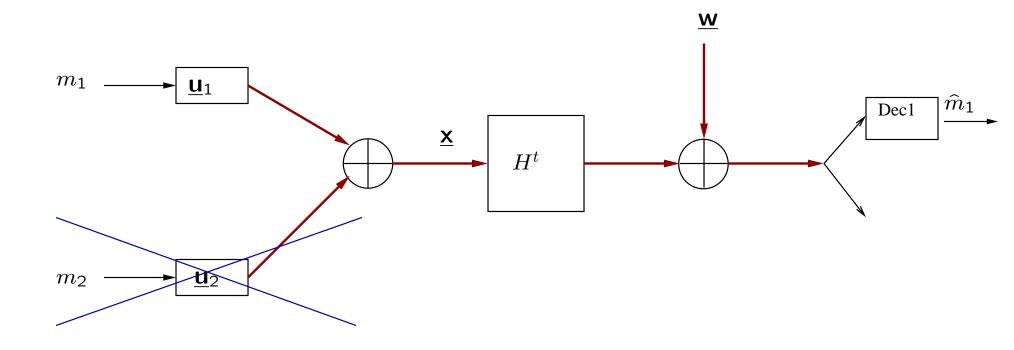
$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_i]$$

Achievable Rates: Costa Precoding

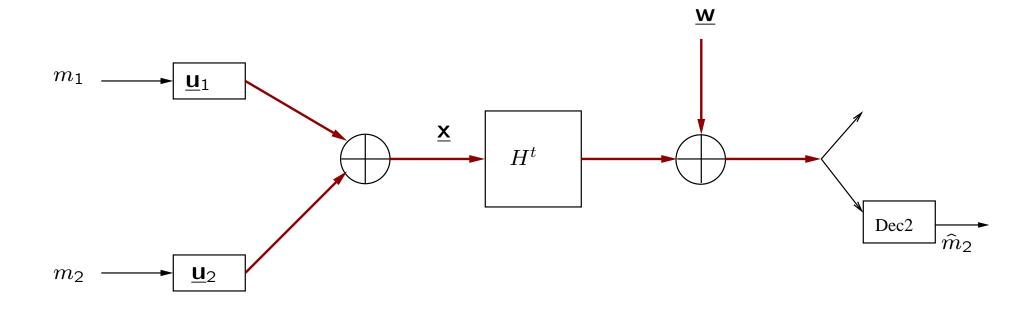


• Users' data modulated onto spatial signatures $\underline{u}_1, \underline{u}_2$

Stage 1: Costa Precoding

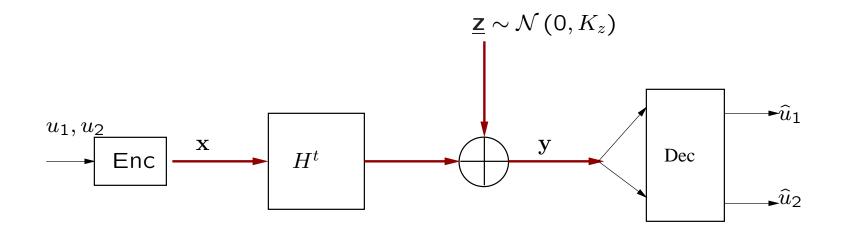


• Encoding for user 1 treating signal from user 2 as known interference at transmitter



• Encode user 2 treating signal for user 1 as noise

Adaptation to Lossy Slepian-Wolf



- Joint distribution of u's and y's depends on noise z
- \bullet Performance independent of correlation in \mathbf{z}

Noise Coloring

- Fix particular Costa coding scheme fixes u's and x.
- Idea:

Choose z such that $p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_i]$ and $(K_z)_{ii} = 1$

• Then can adapt to Lossy Multiterminal Source Coding

Markov Condition and Broadcast Channel

• The Markov condition

$$p[u_1, ..., u_K | y_1, ..., y_K] = \prod_{i=1}^K p[u_i | y_i]$$

of independent interest in the broadcast channel

Markov Condition and Broadcast Channel

• The Markov condition

$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_i]$$

of independent interest in the broadcast channel

$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_1, \dots, y_K, u_1, u_2, \dots, u_{i-1}]$$

Markov Condition and Broadcast Channel

• The Markov condition

$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_i]$$

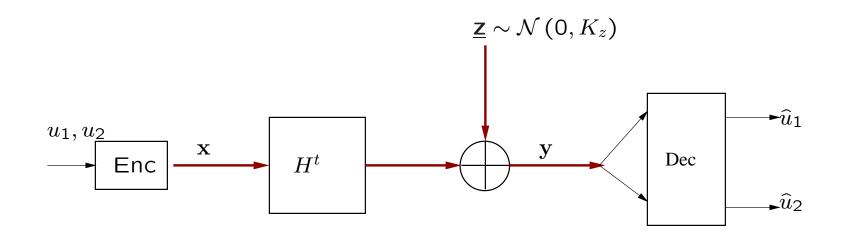
of independent interest in the broadcast channel

$$p[u_1, \dots, u_K | y_1, \dots, y_K] = \prod_{i=1}^K p[u_i | y_1, \dots, y_K, u_1, u_2, \dots, u_{i-1}]$$

• Equivalent to: given u_1, \ldots, u_{i-1}

$$u_i \longrightarrow y_i \longrightarrow y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_K$$

Implication



- Need only y_1 to decode u_1
- Given u_1 , need only y_2 to decode u_2

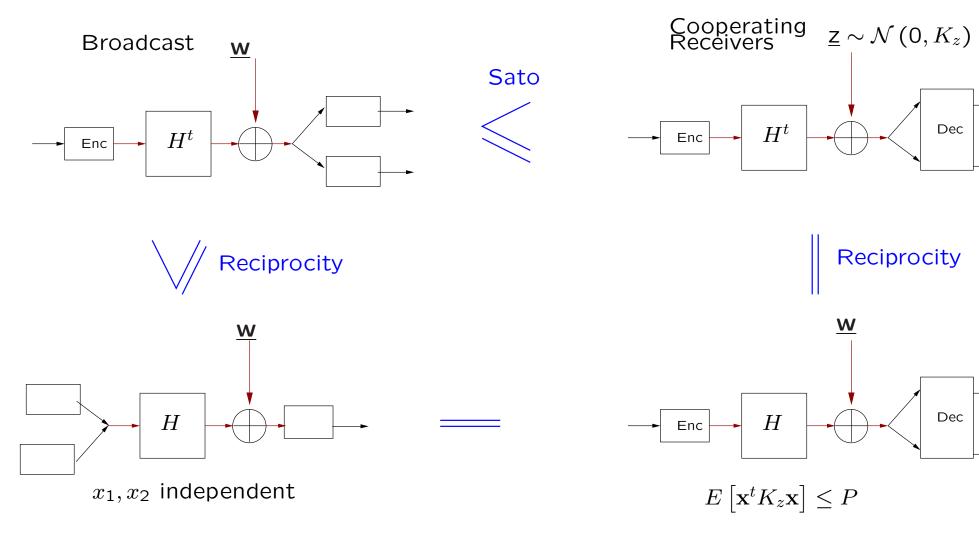
Performance of Costa scheme equals that when receivers cooperate

Markov Condition and Noise Covariance

• The sum capacity is also achieved by such a scheme (CS 01, YC 01, VT 02, VJG 02)

• For every Costa scheme, there is a choice of K_z such that Markov condition holds (Yu and Cioffi, 01)

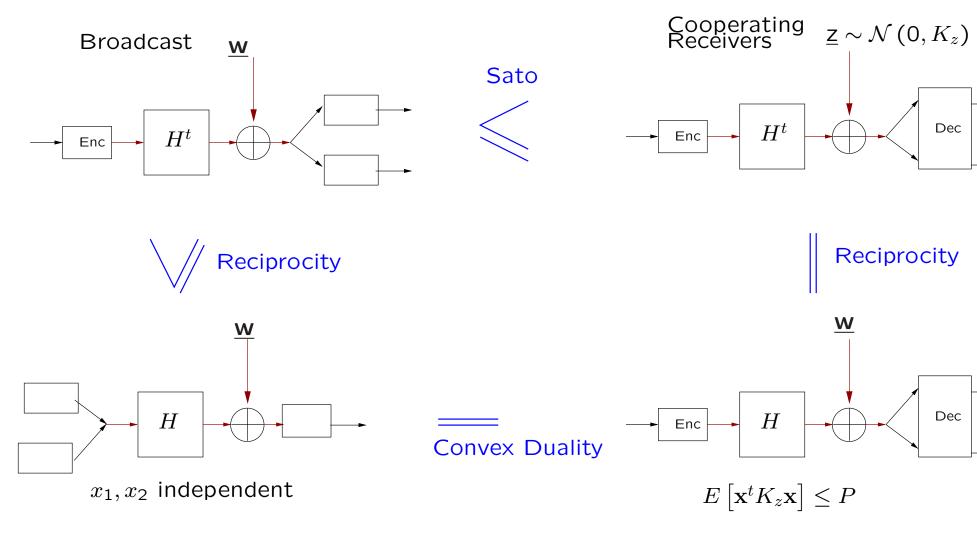
Sum Capacity



Multiple Access

Cooperating Transmitters

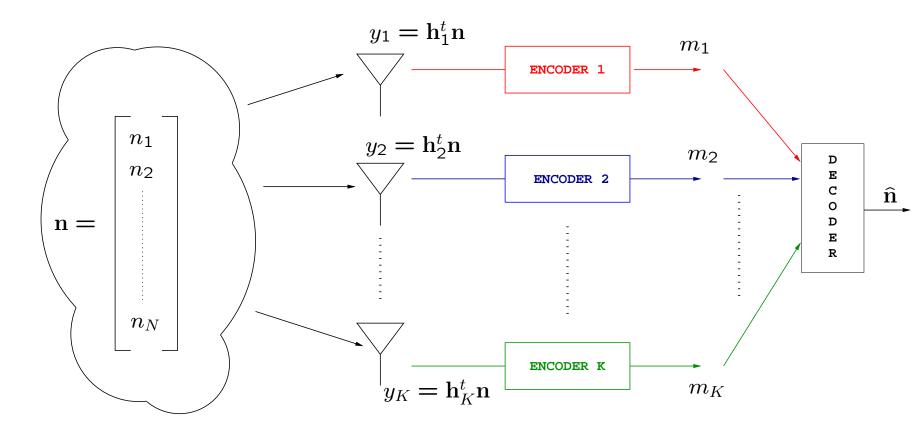
Sum Capacity



Multiple Access

Cooperating Transmitters

Gaussian Multiterminal Source Coding



$$H = [\mathbf{h}_1, \dots, \mathbf{h}_K]$$

Sum of rates of encoders R and distortion metric $d(\mathbf{n}, \hat{\mathbf{n}})$

Main Result

• Distortion metric

$$d(\mathbf{n};\hat{\mathbf{n}}) = \frac{1}{N} (\mathbf{n} - \hat{\mathbf{n}})^t \left(I + H \text{diag} \{ p_1, \dots, p_K \} H^t \right) (\mathbf{n} - \hat{\mathbf{n}})$$

– Here p_1, \ldots, p_K - powers of users in reciprocal MAC

- Rate distortion function
 - $R(D) = \text{Sum rate of MAC} N \log D$ = Sum rate of Broadcast Channel - N log D = log det $(I + HDH^t) - N \log D$

Bells and Whistles

• For quadratic distortion metric

$$d(\mathbf{n}; \hat{\mathbf{n}}) = \frac{1}{N} (\mathbf{n} - \hat{\mathbf{n}})^t (\mathbf{n} - \hat{\mathbf{n}})$$

set of ${\bf H}$ can be characterized

• Analogy with CEO problem:

For large number of encoders and random H characterization of R(D) almost surely

Discussion

• A "connection" made between coding schemes for multiterminal source and channel coding

Discussion

- A "connection" made between coding schemes for multiterminal source and channel coding
- Connection somewhat superficial
 - relation between source coding and broadcast channel through a common random coding argument (PR 02, CC 02)
 - relation between source coding and multiple access channel through a change of variable (VT 02, JVG 01)

Discussion

- A "connection" made between coding schemes for multiterminal source and channel coding
- Connection somewhat superficial
 - relation between source coding and broadcast channel through a common random coding argument
 - relation between source coding and multiple access channel through a change of variable
- Connection is suggestive
 - a codebook level duality