HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin

Mathematical Sciences Research Center, Bell Labs

March 19, 2003

HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin

Mathematical Sciences Research Center, Bell Labs

March 19, 2003

R. Liu and P. Spasojevic WINLAB

HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin

Mathematical Sciences Research Center, Bell Labs

March 19, 2003

R. Liu and P. Spasojevic WINLAB

ACKNOWLEDGEMENTS

Alexei Ashikhmin
Jaehyiong Kim
Sudhir Ramakrishna
Adriaan van Wijngaarden

AUTOMATIC REPEAT REQUEST

- The receiving end detects frame errors and requests retransmissions.
- \bullet P_e is the frame error rate, the average number of transmissions is

$$1 \cdot (1 - P_e) + \dots + n \cdot P_e^{n-1} (1 - P_e) + \dots = \frac{1}{1 - P_e}$$

AUTOMATIC REPEAT REQUEST

- The receiving end detects frame errors and requests retransmissions.
- \bullet P_e is the frame error rate, the average number of transmissions is

$$1 \cdot (1 - P_e) + \dots + n \cdot P_e^{n-1} (1 - P_e) + \dots = \frac{1}{1 - P_e}$$

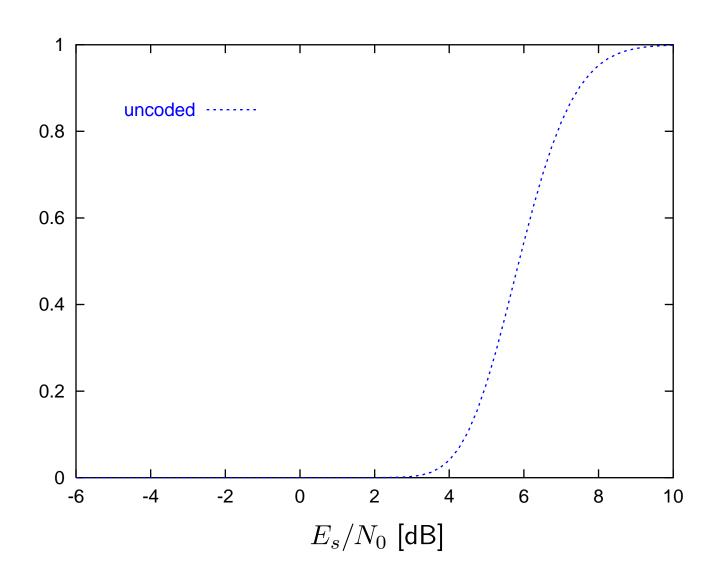
• Hybrid ARQ uses a code that can correct some frame errors.

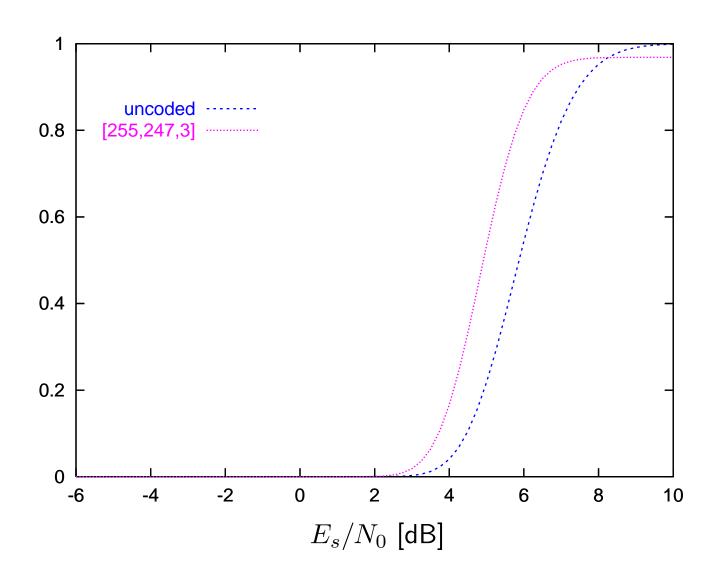
AUTOMATIC REPEAT REQUEST

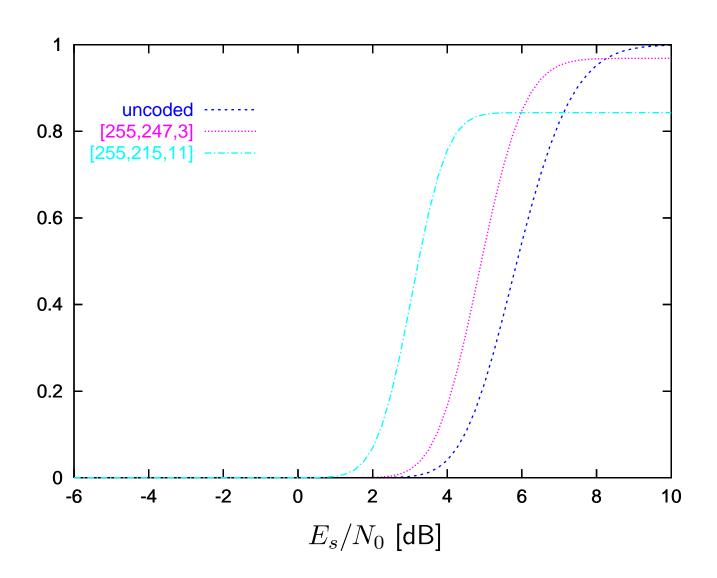
- The receiving end detects frame errors and requests retransmissions.
- \bullet P_e is the frame error rate, the average number of transmissions is

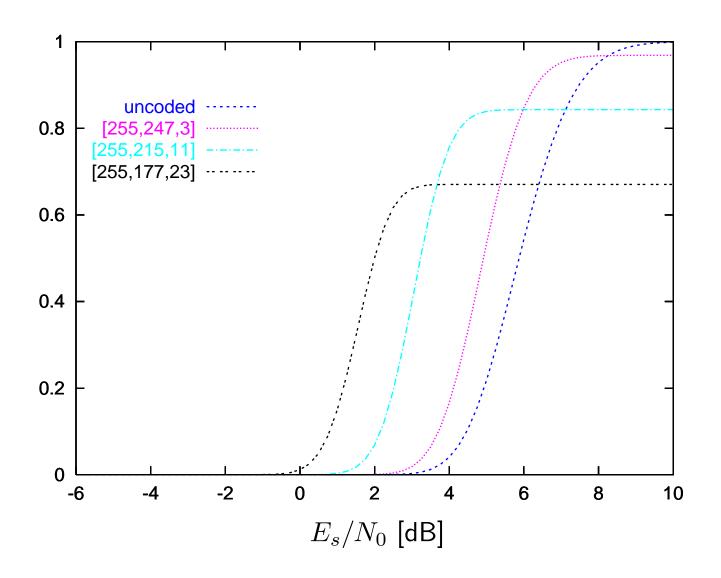
$$1 \cdot (1 - P_e) + \dots + n \cdot P_e^{n-1} (1 - P_e) + \dots = \frac{1}{1 - P_e}$$

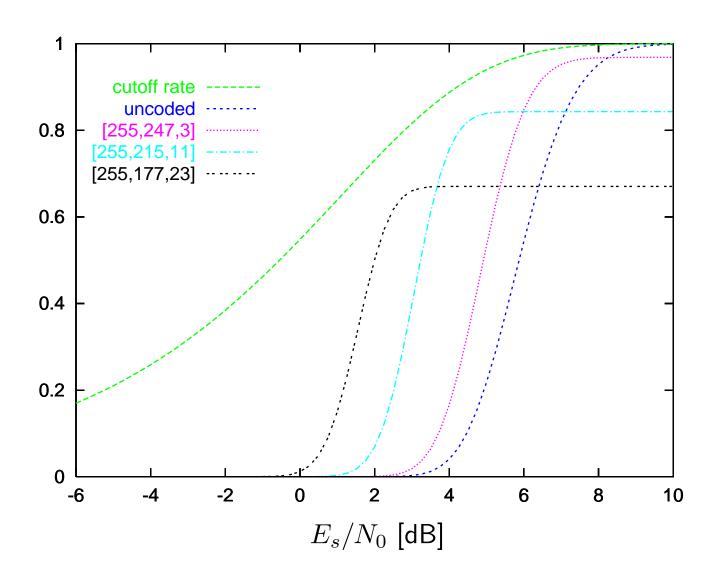
- Hybrid ARQ uses a code that can correct some frame errors.
- In HARQ schemes
 - the average number of transmissions is reduced, but
 - each transmission carries redundant information.

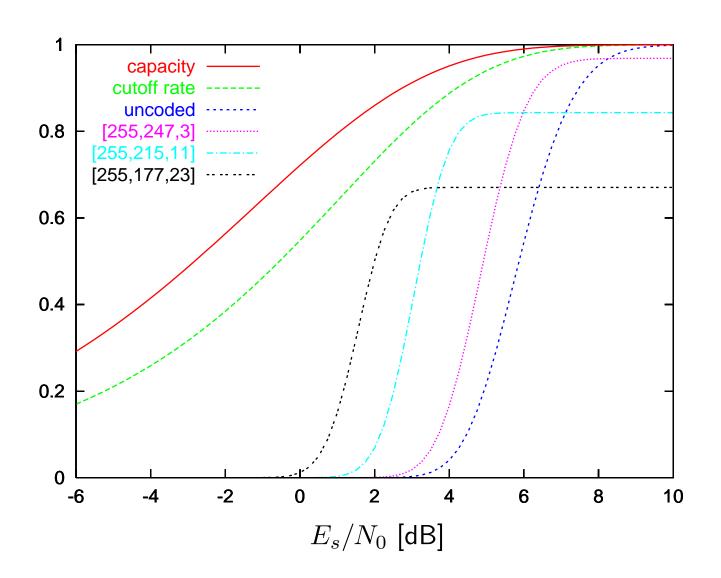












TYPE II HYBRID ARQ

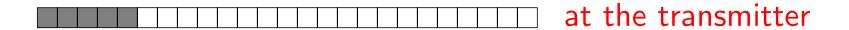
Incremental Redundancy

- Information bits are encoded by a (low rate) mother code.
- Information and a selected number of parity bits are transmitted.

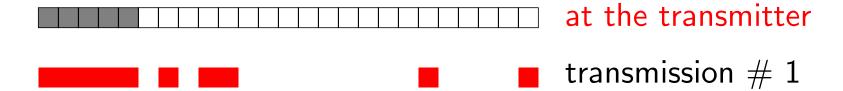
TYPE II HYBRID ARQ

Incremental Redundancy

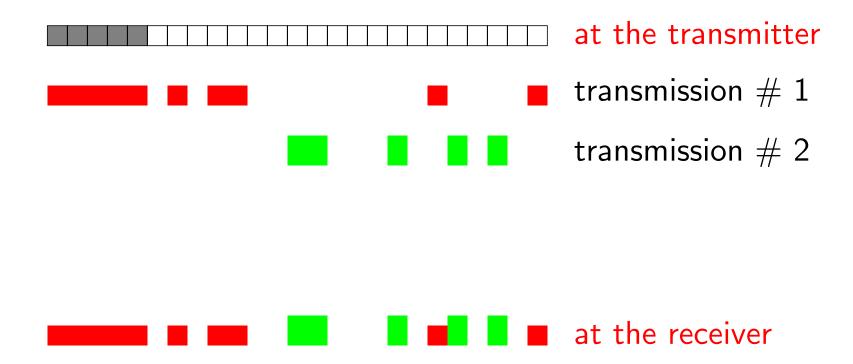
- Information bits are encoded by a (low rate) mother code.
- Information and a selected number of parity bits are transmitted.
- If a retransmission is not successful:
 - transmitter sends additional selected parity bits
 - receiver puts together the new bits and those previously received.
- Each retransmission produces a codeword of a stronger code.
- Family of codes obtained by puncturing of the mother code.

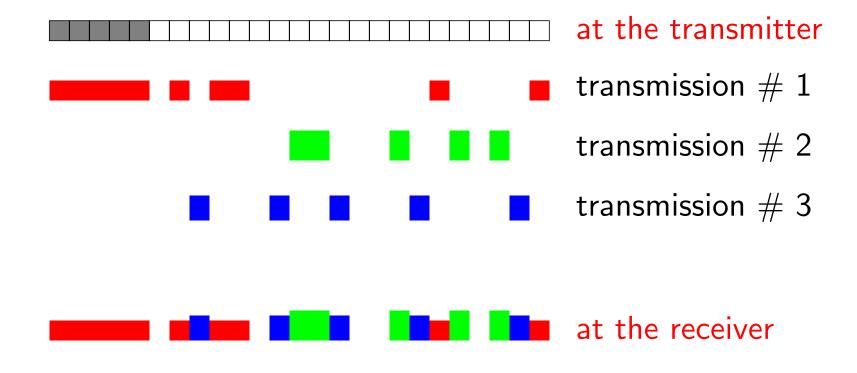


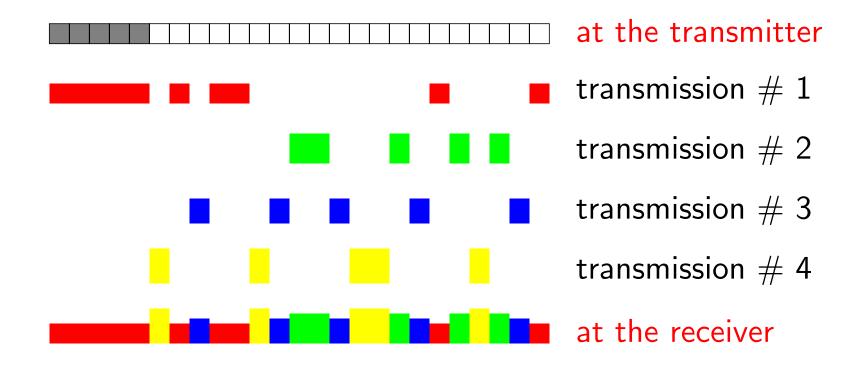
A Rate 1/5 Mother Code



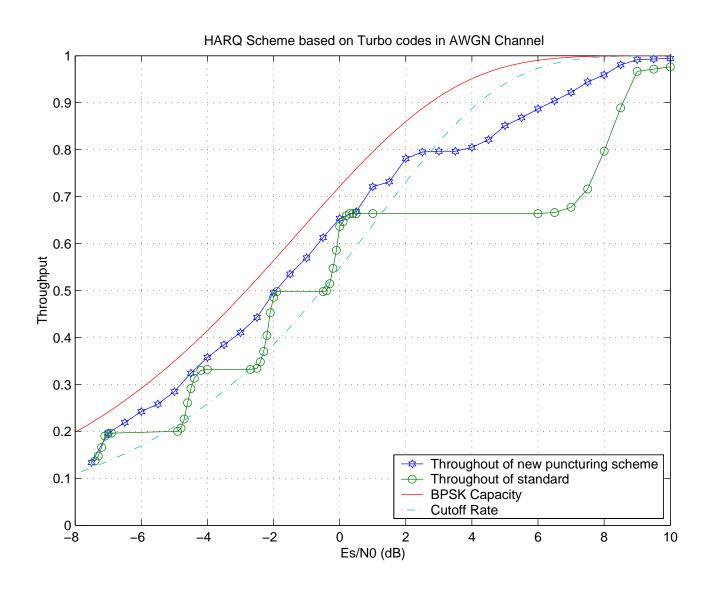
at the receiver







THROUGHPUT IN HYBRID ARQ

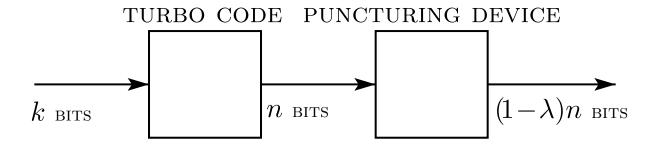


RANDOMLY PUNCTURED CODES

- The mother code is an (n, k) rate R turbo code.
- Each bit is punctured independently with probability λ .

RANDOMLY PUNCTURED CODES

- The mother code is an (n, k) rate R turbo code.
- Each bit is punctured independently with probability λ .
- The expected rate of the punctured code is $R/(1-\lambda)$.
- ullet For large n we have



Rate Compatible Puncturing

- The mother code is an (n, k) rate R turbo code.
- λ_j for j = 1, 2, ..., m are puncturing rates, $\lambda_j > \lambda_k$ for j < k.
- If the i-th bit is punctured in the k-th code and j < k, then it was punctured in the j-th code.

A FAMILY OF RANDOMLY PUNCTURED CODES 8 Rate Compatible Puncturing

- The mother code is an (n, k) rate R turbo code.
- λ_i for j = 1, 2, ..., m are puncturing rates, $\lambda_i > \lambda_k$ for j < k.
- If the *i*-th bit is punctured in the k-th code and j < k, then it was punctured in the j-th code.
- θ_i for $i=1,2,\ldots,n$ are uniformly distributed over [0,1].
- If $\theta_i < \lambda_l$, then the *i*-th bit is punctured in the *l*-th code.

MEMORYLESS CHANNEL MODEL

- Binary input alphabet $\{0,1\}$ and output alphabet \mathcal{Y} .
- Constant in time with transition probabilities W(b|0) and W(b|1), $b \in \mathcal{Y}$.

MEMORYLESS CHANNEL MODEL

- ullet Binary input alphabet $\{0,1\}$ and output alphabet \mathcal{Y} .
- Constant in time with transition probabilities W(b|0) and W(b|1), $b \in \mathcal{Y}$.
- Time varying with transition probabilities at time i $W_i(b|0)$ and $W_i(b|1)$, $b \in \mathcal{Y}$.
- $W_i(\cdot|0)$ and $W_i(\cdot|1)$ are known at the receiver.

Time Invariant Channel

- Sequence $\mathbf{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\mathbf{x'}$ decoded.
- ullet Sequences x and x' are at Hamming distance d.

Time Invariant Channel

- Sequence $\mathbf{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\mathbf{x'}$ decoded.
- ullet Sequences x and x' are at Hamming distance d.
- ullet The probability of error $P_e(m{x}, m{x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \le \gamma^d = \exp\{-d\alpha\},$$

where γ is the Bhattacharyya noise parameter:

$$\gamma = \sum_{b \in \mathcal{Y}} \sqrt{W(b|x=0)W(b|x=1)}$$

Time Invariant Channel

- Sequence $\mathbf{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\mathbf{x'}$ decoded.
- ullet Sequences x and x' are at Hamming distance d.
- ullet The probability of error $P_e(m{x}, m{x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \le \gamma^d = \exp\{-d\alpha\},$$

where γ is the Bhattacharyya noise parameter:

$$\gamma = \sum_{b \in \mathcal{Y}} \sqrt{W(b|x=0)W(b|x=1)}$$

and $\alpha = -\log \gamma$ is the Bhattacharyya distance.

• An (n, k) binary linear code \mathcal{C} with A_d codewords of weight d.

- An (n, k) binary linear code \mathcal{C} with A_d codewords of weight d.
- The union-Bhattacharyya bound on word error probability:

$$P_W^{\mathcal{C}} \leq \sum_{d=1}^n A_d e^{-\alpha d}$$
.

- An (n, k) binary linear code \mathcal{C} with A_d codewords of weight d.
- The union-Bhattacharyya bound on word error probability:

$$P_W^{\mathcal{C}} \leq \sum_{d=1}^n A_d e^{-\alpha d}$$
.

• Weight distribution A_d for a turbo code?

- An (n, k) binary linear code \mathcal{C} with A_d codewords of weight d.
- The union-Bhattacharyya bound on word error probability:

$$P_W^{\mathcal{C}} \le \sum_{d=1}^n A_d e^{-\alpha d}.$$

- Weight distribution A_d for a turbo code?
- ullet Consider a set of codes $[\mathcal{C}]$ corresponding to all interleavers.
- Use the average $\overline{A}_d^{[\mathcal{C}](n)}$ instead of A_d for large n.

TURBO CODE ENSEMBLES A Coding Theorem by Jin and McEliece

ullet There is an ensemble distance parameter $c_0^{[\mathcal{C}]}$ s.t. for large n

$$\overline{A}_d^{[\mathcal{C}](n)} \leq \exp(dc_0^{[\mathcal{C}]})$$
 for large enough d .

TURBO CODE ENSEMBLES A Coding Theorem by Jin and McEliece

ullet There is an ensemble distance parameter $c_0^{[\mathcal{C}]}$ s.t. for large n

$$\overline{A}_d^{[\mathcal{C}](n)} \leq \exp(dc_0^{[\mathcal{C}]})$$
 for large enough d .

ullet For a channel whose Bhattacharyya distance $lpha>c_0^{[\mathcal{C}]}$, we have

$$\overline{P}_W^{[\mathcal{C}](n)} = O(n^{-\beta}).$$

ullet $c_0^{[\mathcal{C}]}$ is the ensemble noise threshold.

PUNCTUREDTURBO CODE ENSEMBLES ITW, April 2003

• $c_0^{[\mathcal{C}_P]}$ is the punctured ensemble noise threshold:

$$\overline{A}_d^{[\mathcal{C}_P](n)} \leq \exp(dc_0^{[\mathcal{C}_P]})$$
 for large enough n and d .

PUNCTUREDTURBO CODE ENSEMBLES ITW, April 2003

• $c_0^{[\mathcal{C}_P]}$ is the punctured ensemble noise threshold:

$$\overline{A}_d^{[\mathcal{C}_P](n)} \leq \exp(dc_0^{[\mathcal{C}_P]})$$
 for large enough n and d .

• If $\log \lambda < -c_0^{[\mathcal{C}]}$,

PUNCTUREDTURBO CODE ENSEMBLES ITW, April 2003

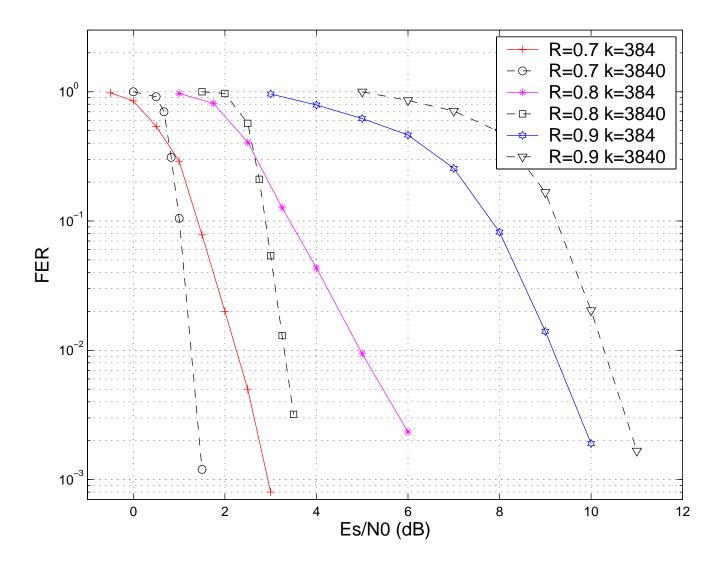
• $c_0^{[\mathcal{C}_P]}$ is the punctured ensemble noise threshold:

$$\overline{A}_d^{[\mathcal{C}_P](n)} \leq \exp(dc_0^{[\mathcal{C}_P]})$$
 for large enough n and d .

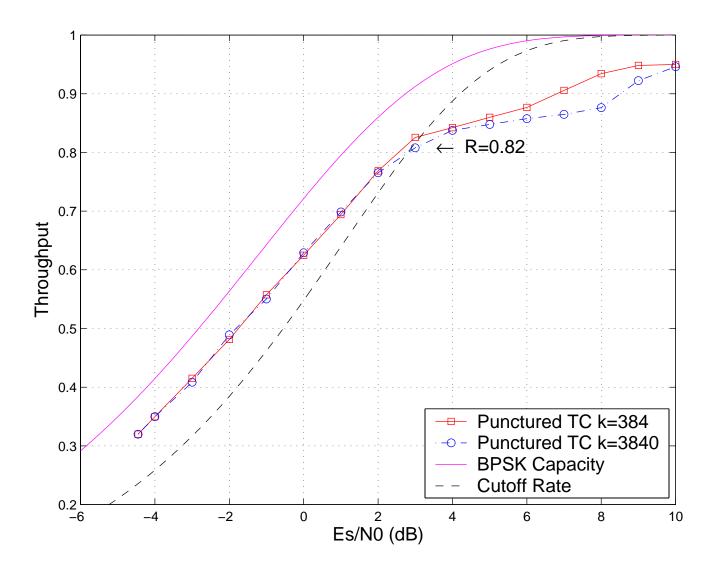
• If $\log \lambda < -c_0^{[\mathcal{C}]}$,

$$c_0^{[\mathcal{C}_P]} \le \log \left[\frac{1 - \lambda}{\exp(-c_0^{[\mathcal{C}]}) - \lambda} \right].$$

PUNCTUREDTURBO CODE ENSEMBLES



PUNCTUREDTURBO CODE ENSEMBLES



HARQ MODEL

- \bullet There are at most m transmissions.
- $\mathcal{I} = \{1, \dots, n\}$ is the set indexing the bit positions in a codeword.
- \mathcal{I} is partitioned in m subsets $\mathcal{I}(j)$, for $1 \leq j \leq m$.
- Bits at positions in $\mathcal{I}(j)$ are transmitted during j-th transmission.

HARQ MODEL

- \bullet There are at most m transmissions.
- $\mathcal{I} = \{1, \dots, n\}$ is the set indexing the bit positions in a codeword.
- \mathcal{I} is partitioned in m subsets $\mathcal{I}(j)$, for $1 \leq j \leq m$.
- Bits at positions in $\mathcal{I}(j)$ are transmitted during j-th transmission.
- The channel remains constant during a single transmission:

$$\gamma_i = \gamma(j)$$
 for all $i \in \mathcal{I}(j)$.

PERFORMANCE MEASURE

Time Varying Channel

• Let $W^n(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^n W_i(y_i|x_i)$.

PERFORMANCE MEASURE

Time Varying Channel

- Let $W^n(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^n W_i(y_i|x_i)$.
- Sequence $\mathbf{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\mathbf{x'}$ decoded.
- The probability of error $P_e(\boldsymbol{x}, \boldsymbol{x'})$ can be bounded as

$$P_{e}(\boldsymbol{x}, \boldsymbol{x'}) \leq \sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} \sqrt{W^{n}(\boldsymbol{y}|\boldsymbol{x})W^{n}(\boldsymbol{y}|\boldsymbol{x'})}$$

$$= \prod_{i=1}^{n} \left(\sum_{b \in \mathcal{Y}} \sqrt{W_{i}(b|x_{i})W_{i}(b|x'_{i})} \right)$$

$$\leq \prod_{i:x_{i} \neq x'_{i}} \gamma_{i}$$

- d_i is the Hamming distance between x and x' over $\mathcal{I}(j)$.
- ullet The probability of error $P_e(m{x}, m{x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \prod_{j=1}^m \gamma(j)^{d_j}$$

- d_j is the Hamming distance between x and x' over $\mathcal{I}(j)$.
- ullet The probability of error $P_e(m{x}, m{x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \prod_{j=1}^m \gamma(j)^{d_j}$$

- $A_{d_1...d_m}$ is the number of codewords with weight d_j over $\mathcal{I}(j)$.
- The union bound on the ML decoder word error probability:

$$P \le \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}$$

Random Transmission Assignment

- A bit is assigned to transmission j with probability α_j .
- d is the weight of the original codeword.
- d_i is the weight of the d-th transmission sub-word.
- The probability that the sub-word weights are d_1, d_2, \ldots, d_m is

$$\begin{pmatrix} d \\ d_1 \end{pmatrix} \begin{pmatrix} d - d_1 \\ d_2 \end{pmatrix} \dots \begin{pmatrix} d - d_1 \dots - d_{m-1} \\ d_m \end{pmatrix} \alpha_1^{d_1} \alpha_2^{d_2} \dots \alpha_m^{d_m}$$

Random Transmission Assignment

• The union bound on the ML decoder word error probability:

$$P \leq \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}$$

Random Transmission Assignment

The union bound on the ML decoder word error probability:

$$P \leq \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}$$

• The expected value of the union bound is

$$\sum_{d} A_{d} \left(\sum_{j=1}^{m} \gamma(j) \alpha_{j} \right)^{h}.$$

• The average Bhattacharyya noise parameter:

$$\overline{\gamma} = \sum_{j=1}^{m} \gamma(j) \alpha_j$$

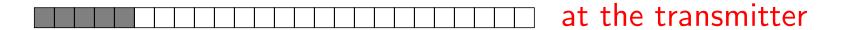
- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .

- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .
- Equivalent to having two transmissions:
 - first with assignment probability (1λ) and noise parameter γ ;
 - second with assignment probability λ and noise parameter 1.

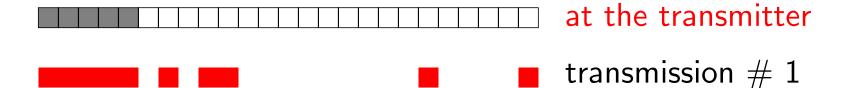
- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .
- Equivalent to having two transmissions:
 - first with assignment probability (1λ) and noise parameter γ ;
 - second with assignment probability λ and noise parameter 1.
- The average noise parameter is $\overline{\gamma} = (1 \lambda)\gamma + \lambda$.
- Requirement $-\log \overline{\gamma} > c_0^{[\mathcal{C}]}$

- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .
- Equivalent to having two transmissions:
 - first with assignment probability (1λ) and noise parameter γ ;
 - second with assignment probability λ and noise parameter 1.
- The average noise parameter is $\overline{\gamma} = (1 \lambda)\gamma + \lambda$.
- Requirement $-\log \overline{\gamma} > c_0^{[\mathcal{C}]}$ translates into

$$-\log \gamma > \log \left[\frac{1-\lambda}{\exp(-c_0^{[C]}) - \lambda} \right].$$



Concluding Remarks



at the receiver

