Multiple Description Coding with Many Channels

Raman Venkataramani
Harvard University, Cambridge, MA raman@deas.harvard.edu

DIMACS workshop on network information theory
Joint work with Gerhard Kramer (Bell Labs) and Vivek Goyal (Digital Fountain)

Packet Networks

Model: Packets are either lost completely or received error-free.

How do we deal with packet loses?

- Request a retransmission.
- Good for loss-less transmission.
- Not feasible for real time data such as voice and video.

Alternate Approach:

- Reconstruct using available packets.
- Requires adding redundancy to packets (coding).
- Advantage: Graceful degradation of output quality when packet losses increase.

The second approach is called Multiple Description Coding.

Example: Coding with 3 Descriptions

- The source is IID vector X^{N} (length N).
- The encoder produces L "descriptions" J_{1}, \ldots, J_{L} of X^{N}.
- The decoder produces an output \hat{X}^{N} from the available descriptions.

Review of Rate-Distortion Theory

Theorem 1. [Shannon] The $R D$ region is the convex set $R \geq R(D)$ where

$$
R(D)=\min _{\hat{X}} I(X ; \hat{X}) \quad \text { s.t. } \quad \mathrm{E} d(X, \hat{X}) \leq D
$$

minimized over all \hat{X} jointly distributed with X.
Gaussian Source $X \sim N(0,1): R(D)=\frac{1}{2} \log \left(\frac{1}{D}\right)$

Multiple Description (MD) coding

Source: Length N vector X^{N} of i.i.d. random variables.
Encoder: $X^{N} \rightarrow\left\{J_{1}, \ldots, J_{L}\right\}$ which are the L "descriptions" of X^{N} at rates $R_{1}, \ldots R_{L}$ per source symbol.
Descriptions: $\quad J_{l}=f_{l}\left(X^{N}\right), \quad H\left(J_{l}\right) \leq N R_{l}, \quad l=1, \ldots L$.
Decoder: Consists of $2^{L}-1$ decoders: one for each non-empty subset of the available descriptions.
Decoder Outputs: $X_{\mathcal{S}}^{N}=g_{\mathcal{S}}\left(\left\{J_{l}: l \in \mathcal{S}\right\}\right)$ where $\mathcal{S} \subseteq\{1, \ldots, L\}, \mathcal{S} \neq \emptyset$.
In the last example ($L=3$):

$$
\mathcal{S}=\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}, \text { or }\{1,2,3\}
$$

Problem Statement

- Problem: What is the Rate-Distortion (RD) region?
- The rates (L parameters) are

$$
R_{1}, \ldots, R_{L}
$$

- The distortions ($\left(2^{L}-1\right)$ parameters) are

$$
D_{\mathcal{S}}=\frac{1}{N} \mathrm{E} d\left(X^{N}, X_{\mathcal{S}}^{N}\right), \quad \mathcal{S} \subseteq\{1, \ldots, L\}, \mathcal{S} \neq \emptyset
$$

- The RD region is $\left(L+2^{L}-1\right)$-dimensional.
- Remark: For $L=1$, it is Shannon's RD region.

$$
L=2 \text { case }
$$

The RD region is the set of possible rates and distortions as $N \rightarrow \infty$:

$$
\begin{array}{lr}
R_{1}=\frac{1}{N} H\left(J_{1}\right) & D_{1}=\frac{1}{N} \operatorname{Ed}\left(X^{N}, X_{1}^{N}\right) \\
R_{2}=\frac{1}{N} H\left(J_{1}\right) & D_{2}=\frac{1}{N} \operatorname{Ed}\left(X^{N}, X_{2}^{N}\right) \\
D_{12} & =\frac{1}{N} \operatorname{Ed}\left(X^{N}, X_{12}^{N}\right)
\end{array}
$$

Review of Past Research

El Gamal and Cover (1982) found an achievable region for $L=2$:

$$
\begin{aligned}
R_{1} & \geq I\left(X ; X_{1}\right) \\
R_{2} & \geq I\left(X ; X_{2}\right) \\
R_{1}+R_{2} & \geq I\left(X ; X_{1} X_{2} X_{12}\right)+I\left(X_{1} ; X_{2}\right) \\
D_{\mathcal{S}} & \geq \mathrm{Ed}\left(X, X_{\mathcal{S}}\right), \quad \mathcal{S}=1,2,12
\end{aligned}
$$

where X_{1}, X_{2}, X_{12} are any r.v's jointly distributed with the source X.

Rate region for fixed X_{1}, X_{2}, X_{12} such that $D_{\mathcal{S}} \geq \mathrm{E} d\left(X, X_{\mathcal{S}}\right)$.

Remark 1: The convex hull of this region is achievable by time-sharing.
Remark 2: Gives the RD region for the Gaussian source.

- Ozarow (1980) computed an outer bound on the RD region for $L=2$ for the Gaussian source. The bound meets the inner bound by El Gamal and Cover.
- Zhang and Berger (1987) provided a stronger achievable result than El Gamal and Cover for $L=2$. For the binary symmetric source with Hamming distortion measure, their result provides a strict improvement.
- Wolf, Wyner and Ziv (1980), Witsenhausen and Wyner (1981), Zhang and Berger (1983) provided some results for the binary symmetric source.

An Achievable Region for $L>2$

Theorem 2. The $R D$ region contains the rates and distortions satisfying

$$
\begin{aligned}
\sum_{l \in \mathcal{S}} R_{l} \geq & (|\mathcal{S}|-1) I\left(X ; X_{\emptyset}\right)-H\left(X_{\mathcal{U}}: \mathcal{U} \in 2^{\mathcal{S}} \mid X\right) \\
& +\sum_{\mathcal{T} \subseteq \mathcal{S}} H\left(X_{\mathcal{T}} \mid X_{\mathcal{U}}: \mathcal{U} \in 2^{\mathcal{T}}-\mathcal{T}\right) \\
D_{\mathcal{S}} \geq & \mathrm{E} d_{\mathcal{S}}\left(X, X_{\mathcal{S}}\right)
\end{aligned}
$$

for every $\emptyset \neq \mathcal{S} \subseteq \mathcal{L}=\{1, \ldots, L\}$ and some joint distribution between outputs $\left\{X_{\mathcal{S}}\right\}$ and the source X.
Remark: This result generalizes the results of EI Gamal and Cover, and of Zhang and Berger.

Gaussian Source: Outer Bound on the RD Region

- Gaussian source: $X \sim N(0,1)$.
- Squared-error distortion: $d(x, y)=|x-y|^{2}$.
- An outer bound on the RD region:

Theorem 3. The RD region is contained in
$\exp \left(-2 \sum_{k \in \mathcal{K}} R_{k}\right) \leq \min _{\left\{\mathcal{K}_{m}\right\}_{m=1}^{M}} \inf _{\lambda \geq 0}\left(D_{\mathcal{K}} \frac{\prod_{m=1}^{M}\left(D_{\mathcal{K}_{m}}+\lambda\right)}{\left(D_{\mathcal{K}}+\lambda\right)(1+\lambda)^{M-1}}\right), \quad \forall \mathcal{K} \in 2^{\mathcal{L}}$
minimized over all partitions $\left\{\mathcal{K}_{m}\right\}$ of \mathcal{K}.

Special Case: L Channels and $L+1$ Decoders

Keep only side and central decoders. Ignore all other decoders.

Inner and Outer Bounds on the RD region

- Inner Bound: Computable from our achievable region (Theorem 2).
- Outer Bound: Compuatable from Theorem 3 for the Gaussian source
- Tightness of Bounds: The inner and outer bounds meet for over some range of rates and distortions for the Gaussian source.

Example: 3-Channel 4-Decoder Problem

Take $L=3, D_{1}=D_{2}=D_{3}=1 / 2$ and $D_{0}=1 / 16$.
Outer Bound:

$$
\begin{aligned}
R_{l} & \geq 0.5, \quad l=1,2,3 \\
R_{1}+R_{2}+R_{3} & \geq 2.1755
\end{aligned}
$$

Achievable Rates:

$$
\begin{aligned}
R_{l} & \geq 0.5, \quad l=1,2,3 \\
R_{1}+R_{2}+R_{3} & =2.1755 \\
R_{l}+R_{m} & \geq 1.1258, \quad l<m
\end{aligned}
$$

Remark: Excess rate $=2.1755-R\left(D_{0}\right)=0.1755$ bits.

Blue Region: Inner and outer bounds meet on a hexagon. Green Region: Inner bound (does not meet outer bound).

DIMACS 2003
Another Example: $L=3, D_{1}=D_{2}=1 / 2, D_{3}=3 / 4$, and $D_{0}=1 / 16$:

Gaussian Sources are Successively Refinable

Chains:
$\underset{\text { Gaussian }}{X \xrightarrow{R_{1}} X_{1} \xrightarrow{R_{2}} X_{2} \xrightarrow{R_{3}} X_{123} \cdots} \begin{aligned} R_{1}+R_{2} & \geq R\left(D_{12}\right) \\ R_{1}+R_{2}+R_{3} & \geq R\left(D_{123}\right)\end{aligned}$

Trees:

$$
\begin{aligned}
R_{1} & \geq R\left(D_{1}\right) \\
R_{1}+R_{2} & \geq R\left(D_{12}\right) \\
R_{1}+R_{2}+R_{3} & \geq R\left(D_{123}\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{1} & \geq R\left(D_{1}\right) \\
R_{1}+R_{2} & \geq R\left(D_{12}\right) \\
R_{1}+R_{2}+R_{3} & \geq R\left(D_{123}\right) \\
R_{1}+R_{2}+R_{4} & \geq R\left(D_{124}\right) \\
R_{1}+R_{5} & \geq R\left(D_{15}\right)
\end{aligned}
$$

Summary

- Multiple Description Coding:
- Motivation: coding for packet networks.
- Results:
- An achievable region
- An outer bound for the Gaussian source.
- Still unsolved:
- The Gaussian problem for $L \geq 3$
- Non-Gaussian sources

