

Wireless Network Information Theory

L-L. Xie and P. R. Kumar

Dept. of Electrical and Computer Engineering, and Coordinated Science Lab University of Illinois, Urbana-Champaign

Emailprkumar@uiuc.eduWebhttp://black.csl.uiuc.edu/~prkumar

DIMACS Workshop on Network Information Theory, March 17-19, 2003

Wireless Networks

- Communication networks formed by nodes with radios
- Ad Hoc Networks
 - Current proposal for operation: Multi-hop transport
 - » Nodes relay packets until they reach their destinations
 - They should be spontaneously deployable anywhere
 - » On a campus
 - » On a network of automobiles on roads
 - » On a search and rescue mission
 - They should be able to adapt themselves to
 - » the number of nodes in the network
 - » the locations of the nodes
 - » the mobility of the nodes
 - » the traffic requirements of the nodes
- Sensor webs

Current proposal for ad hoc networks

- Multi-hop transport
 - Packets are relayed from node to node
 - A packet is fully decoded at each hop
 - All interference from all other nodes is simply treated as noise
- Properties
 - Simple receivers
 - Simple multi-hop packet relaying scheme
 - Simple abstraction of "wires in space"
- This choice for the mode of operation gives rise to
 - Routing problem
 - Media access control problem
 - Power control problem

Interference Interference Interference Interference Noise Noise Noise e Noise Noise

-

Three fundamental questions

- If all interference is treated as noise, then how much information can be transported over wireless networks?
- What is <u>unconditionally</u> the best mode of operation?
- What are the fundamental limits to information transfer?
- Allows us to answer questions such as
 - How far is current technology from the optimal?
 - When can we quit trying to do better?
 - » E.g.. If "Telephone modems are near the Shannon capacity" then we can stop trying to build better telephone modems
 - What can wireless network designers hope to provide?
 - What protocols should be designed?

If interference is treated as noise ...

If all interference is regarded as noise ...

… then packets can collide destructively

- Reception is successful if Receiver not in vicinity of two transmissions
- Alternative Models
 - − SINR ≥ β for successful reception
 - Or Rate depends on SINR

or

Scaling laws under interference model

- <u>Theorem</u> (GK 2000)
 - Disk of area *A* square meters
 - n nodes
 - Each can transmit at *W* bits/sec

- <u>Best Case</u>: Network can transport $\Theta(W\sqrt{An})$ bit-meters/second
- Square root law
 - Transport capacity doesn't increase linearly, but only like square-root
 - Each node gets $\frac{c}{\sqrt{n}}$ bit-meters/second

• <u>Random case</u>: Each node can obtain throughput of $\Theta\left(\frac{1}{\sqrt{n\log n}}\right)$ bits/second

Optimal operation under "collision" model

- Optimal operation is multi-hop
 - Transport packets over many
 - hops of distance $\frac{c}{\sqrt{n}}$
- Optimal architecture
 - Group nodes into cells of size about log *n*
 - Choose a common power level for all nodes
 » Nearly optimal
 - Power should be just enough to guarantee network connectivity
 » Sufficient to reach all points in neighboring cell
 - Route packets along nearly straight line path from cell to cell

But interference is not interference

- Excessive interference can be good for you
 - Receiver can first decode loud signal perfectly
 - Then subtract loud signal
 - Then decode soft signal perfectly
 - So excessive interference can be good
- Packets do <u>not</u> destructively collide
- Interference is information!
- So we need an information theory for networks to determine
 - How to operate wireless networks
 - How much information wireless networks can transport
 - The information theory should be able to handle general wireless networks

Towards fundamental limits in wireless networks

Wireless networks don't come with links

- They are formed by nodes with radios
 - There is no *a priori* notion of "links"
 - Nodes simply radiate energy

Nodes can cooperate in complex ways

... while Nodes in Group D amplify and forward packets from Group E to Group F

W	hi	le
---	----	----

....

• • • •

SINR =	=	Signal	
Interference + Noise			
One strat	tegy: why not:	Increase Signal for Receiver Reduce Interference at Receiver	r

One strategy:	Decode and forward
Instead, why not:	Amplify and Forward

How should nodes cooperate?

- Some obvious choices
 - Should nodes relay packets?
 - Should they amplify and forward?
 - Or should they decode and forward?
 - Should they cancel interference for other nodes?
 - Or should they boost each other's signals?
 - Should nodes simultaneously broadcast to a group of nodes?
 - Should those nodes then cooperatively broadcast to others?
 - What power should they use for any operation?

...

- ...
- Or should they use much more sophisticated unthought of strategies?

 Tactics such as 	Decode and forward Amplify and Forward Interference cancella	may be too simplistic ation
 Cooperation through 	 Broadcast Multiple-access Relaying	does not capture all possible modes of operation

"There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy." — Hamlet

- The strategy space is infinite dimensional
- Problem has all the complexities of
 - team theory
 - partially observed systems

- We want Information Theory to tell us what the basic <u>strategy</u> should be
 - Then one can develop protocols to realize the strategy

Key Results: A dichotomy

If absorption in medium

- Transport capacity grows like $\Theta(n)$
 - » when nodes are separated by distance at least $\rho_{\rm min}$
- Square-root law is optimal » $\Theta(\sqrt{An}) = \Theta(n)$
 - » Since area A grows like $\Omega(n)$
- Multi-hop decode and forward is order optimal

- If there is no absorption, and attenuation is very small
 - Transport capacity can grow superlinearly like $\Theta(n^{\theta})$ for $\theta > 1$
 - Coherent multi-stage relaying with interference cancellation can be optimal

- Along the way
 - Total power used by a network bounds the transport capacity
 - Or not
 - A feasible rate for Gaussian multiple relay channels

A quick review of information theory and networks

Shannon's Information Theory

- Shannon's Capacity Theorem
 - Channel Model p(y|x)
 - » Discrete Memoryless Channel
 - <u>Capacity</u> = $Max_{p(x)}I(X;Y)$ bits/channel use

$$I(X;Y) = \sum_{x,y} p(x,y) \log\left(\frac{p(X,Y)}{p(X)p(Y)}\right)$$

Shannon's architecture for communication

Gaussian scalar broadcast channel

Multiple access channel

<u>The simplest relay channel</u>

<u>The simplest interference channel</u>

- Systems being built are much more complicated and the possible modes of cooperation can be much more sophisticated
 - How to analyze?
 - Need a general purpose information theory

The Model

Model of system: A planar network

- n nodes in a plane
- ρ_{ii} = distance between nodes *i* and *j*
- Minimum distance ρ_{\min} between nodes
- Signal attenuation with distance ρ : $\frac{e^{-\gamma\rho}}{\rho^{\epsilon}}$

- $-\gamma \ge 0$ is the <u>absorption constant</u>
 - » Generally $\gamma > 0$ since the medium is absorptive unless over a vacuum
 - » Corresponds to a loss of $20\gamma \log_{10} e$ db per meter
- $\delta > 0$ is the path loss exponent
 - » δ =1 corresponds to inverse square law in free space

Transmitted and received signals

- W_i = symbol from some alphabet {1,2,3,...,2^{*TR*_{*ik*}} to be sent by node *i*}
- $x_i(t) = f_{i,t}(y_i^{t-1}, W_i)$ = signal transmitted by node *i* time *t*
- $y_j(t) = \sum_{\substack{i=1\\i\neq j}}^n \frac{e^{-\gamma \rho_{ij}}}{\rho_{ij}\delta} x_i(t) + z_j(t) = \text{signal received by node } j \text{ at time } t$

- Destination *j* uses the decoder $\hat{W}_i = g_j(y_j^T, W_j)$
- Error if $\hat{W}_i \neq W_i$
- $(R_1, R_2, ..., R_l)$ is feasible rate vector if there is a sequence of codes with $\begin{array}{c} Max \\ M_{W_1, W_2, ..., W_l} & \Pr(\hat{W_i} \neq W_i \text{ for some } i \mid W_1, W_2, ..., W_l) \rightarrow 0 \text{ as } T \rightarrow \infty \end{array}$
- Individual power constraint $P_i \le P_{ind}$ for all nodes *i*

Or Total power constraint
$$\sum_{i=1}^{n} P_i \le P_{total}$$

The Transport Capacity: Definition

- Source-Destination pairs
 - $(s_1, d_1), (s_2, d_2), (s_3, d_3), \dots, (s_{n(n-1)}, d_{n(n-1)})$
- Distances
 - $\rho_1, \rho_2, \rho_3, \dots, \rho_{n(n-1)}$ distances between the sources and destinations
- Feasible Rates
 - $(R_1, R_2, R_3, \dots, R_{n(n-1)})$ feasible rate vector for these source-destination pairs
- Distance-weighted sum of rates

 $- \Sigma_i R_i \rho_i$

<u>Transport Capacity</u>

$$C_T = \sup_{(R_1, R_2, \dots, R_{n(n-1)})} \sum_{i=1}^{n(n-1)} R_i \cdot \rho_i$$

bit-meters/second or bit-meters/slot

- $C_T = \sup \Sigma_i R_i \rho_i$
 - Measured in bit-meters/second or bit-meters/slot
 - Analogous to man-miles/year considered by airlines
 - Upper bound to what network can carry
 - » Irrespective of what nodes are sources or destinations, and their rates
 - Satisfies a scaling law
 - » Conservation law which restricts what network can provide
 - » Irrespective of whether it is of prima facie interest
 - However it is of natural interest
 - » Allows us to compare apples with apples

The Results

When there is absorption or relatively large path loss

The total power bounds the transport capacity

Theorem (XK 2002): Joules per bit-meter bound

- Suppose $\gamma > 0$, there is some absorption,
- Or $\delta > 3$, if there is no absorption at all
- Then for all Planar Networks

$$C_T \leq \frac{c_1(\gamma, \delta, \rho_{\min})}{\sigma^2} \cdot P_{total}$$

where

$$c_{1}(\gamma, \delta, \rho_{\min}) = \frac{2^{2\delta+7}}{\gamma^{2} \rho_{\min}^{2\delta+1}} \frac{e^{-\gamma \rho_{\min}/2} (2 - e^{-\gamma \rho_{\min}/2})}{(1 - e^{-\gamma \rho_{\min}/2})} \quad \text{if } \gamma > 0$$
$$= \frac{2^{2\delta+5} (3\delta - 8)}{(\delta - 2)^{2} (\delta - 3) \rho_{\min}^{2\delta-1}} \quad \text{if } \gamma = 0 \text{ and } \delta > 3$$

- <u>A Max-flow Min-cut Lemma</u>
 - N = subset of nodes

 $P_N^{rec}(T) =$ Power received by nodes in N from outside N

$$= \frac{1}{T} \sum_{t=1}^{T} \sum_{j \in N} E\left(\sum_{i \notin N} \frac{x_i(t)}{\rho_{ij}^{\delta}}\right)^2$$

- Then

$$\sum_{\{l:d_l \in N \text{ but } s_l \notin N\}} \leq \frac{1}{2\sigma^2} \liminf_{T \to \infty} P_N^{rec}(T)$$

To obtain power bound on transport capacity

- Idea of proof
- Consider a number of cuts one meter apart
- Every source-destination pair (s_l,d_l) with source at a distance ρ_l is cut by about ρ_l cuts

$$\sum_{l} R_{l} \rho_{l} \leq c \sum_{N_{k} \{l \text{ is cut by } N_{k}\}} \sum_{l} R_{l} \leq \frac{c}{2\sigma^{2}} \sum_{N_{k}} \liminf_{T \to \infty} P_{N_{k}}^{rec}(T) \leq \frac{cP_{total}}{\sigma^{2}}$$

1

O(n) upper bound on Transport Capacity

<u>Theorem</u>

- Suppose $\gamma > 0$, there is some absorption,
- Or $\delta > 3$, if there is no absorption at all
- Then for all Planar Networks

$$C_T \leq \frac{c_1(\gamma, \delta, \rho_{\min}) P_{ind}}{\sigma^2} \cdot n$$

where

$$c_{1}(\gamma, \delta, \rho_{\min}) = \frac{2^{2\delta+7}}{\gamma^{2} \rho_{\min}^{2\delta+1}} \frac{e^{-\gamma \rho_{\min}/2} (2 - e^{-\gamma \rho_{\min}/2})}{(1 - e^{-\gamma \rho_{\min}/2})} \quad \text{if } \gamma > 0$$
$$= \frac{2^{2\delta+5} (3\delta - 8)}{(\delta - 2)^{2} (\delta - 3) \rho_{\min}^{2\delta-1}} \quad \text{if } \gamma = 0 \text{ and } \delta > 3$$

Feasibility of a rate vector

<u>Theorem</u>

- A set of rates $(R_1, R_2, ..., R_l)$ can be supported by multi-hop transport if
- Traffic can be routed, possibly over many paths, such that

- No node has to relay more than
$$S\left(\frac{e^{-2\gamma\overline{\rho}}P_{ind}/\overline{\rho}^{2\delta}}{c_3(\gamma,\delta,\rho_{\min})P_{ind}+\sigma^2}\right)$$

– where $\overline{\rho}$ is the longest distance of a hop

and
$$c_3(\gamma, \delta, \rho_{\min}) = \frac{2^{3+2\delta} e^{-\gamma \rho_{\min}}}{\gamma \rho_{\min}^{1+2\delta}}$$
 if $\gamma > 0$
$$= \frac{2^{2+2\delta}}{\rho_{\min}^{2\delta}(\delta-1)}$$
 if $\gamma = 0$ and $\delta > 2$

Multihop transport can achieve $\Theta(n)$

<u>Theorem</u>

- Suppose $\gamma > 0$, there is some absorption,
- Or $\delta > 1$, if there is no absorption at all
- Then in a regular planar network

$$C_T \ge S\left(\frac{e^{-2\gamma}P_{ind}}{c_2(\gamma,\delta)P_{ind}+\sigma^2}\right) \cdot n$$

where

$$c_{2}(\gamma, \delta) = \frac{4(1+4\gamma)e^{-2\gamma} - 4e^{-4\gamma}}{2\gamma(1-e^{-2\gamma})} \quad \text{if } \gamma > 0$$

$$=\frac{16\delta^2 + (2\pi - 16)\delta - \pi}{(\delta - 1)(2\delta - 1)} \quad \text{if } \gamma = 0 \text{ and } \delta > 0$$

Optimality of multi-hop transport

<u>Corollary</u>

- So if $\gamma > 0$ or $\delta > 3$
- And multi-hop achieves $\Theta(n)$
- Then it is optimal with respect to the transport capacity up to order

Multi-hop is almost optimal in a random network

Theorem

- Consider a regular planar network
- Suppose each node randomly chooses a destination » Choose a node nearest to a random point in the square
- Suppose $\gamma > 0$ or $\delta > 1$
- Then multihop can provide $\Omega\left(\frac{1}{\sqrt{n\log n}}\right)$ bits/time-unit for every

source with probability $\rightarrow 1$ as the number of nodes $n \rightarrow \infty$

- <u>Corollary</u>
 - Nearly optimal since transport capacity achieved is $\Omega\left(\frac{n}{\sqrt{\log n}}\right)$

Idea of proof for random source - destination pairs

- Simpler than GK since cells are square and contain one node each
- A cell has to relay traffic if a random straight line passes through it
- How many random straight lines pass through cell?
- Use Vapnik-Chervonenkis theory to guarantee that no cell is overloaded

What happens when the attenuation is very low?

Another strategy emerges as of interest ...

 <u>Coherent multi-stage relaying with interference cancellation</u> (CRIC)

- All upstream nodes coherently cooperate to send a packet to the next node
- A node cancels all the interference caused by all transmissions to its downstream nodes

 Coherent multi-stage relaying with <u>interference cancellation</u> (CRIC)

- All upstream nodes coherently cooperate to send a packet to the next node
- A node cancels all the interference caused by all transmissions to its downstream nodes

Interference cancellation

 Coherent multi-stage relaying with <u>interference cancellation</u> (COMSRIC)

- All upstream nodes coherently cooperate to send a packet to the next node
- A node cancels all the interference caused by all transmissions to its downstream nodes

A feasible rate for the Gaussian multiple-relay channel

<u>Theorem</u>

- Suppose α_{ij} = attenuation from *i* to *j*
- Choose power P_{ik} = power used by *i* intended directly for node *k*

- where
$$\sum_{k=i}^{M} P_{ik} \le P_i$$

$$R < \min_{1 \le j \le n} S\left(\frac{1}{\sigma^2} \sum_{k=1}^{j} \left(\sum_{i=0}^{k-1} \alpha_{ij} \sqrt{P_{ik}}\right)^2\right)$$

is feasible

A group relaying version

<u>Theorem</u>

- A feasible rate for group relaying

$$- R < \min_{1 \le j \le M} S\left(\frac{1}{\sigma^2} \sum_{k=1}^{j} \left(\sum_{i=0}^{k-1} \alpha_{N_i N_j} \sqrt{P_{ik} / n_i} \cdot n_i\right)^2\right)$$

Unbounded transport capacity can be obtained for fixed total power

<u>Theorem</u>

- Suppose $\gamma = 0$, there is no absorption at all,
- And $\delta < 3/2$
- Then C_T can be unbounded in regular planar networks even for fixed P_{total}

• <u>Theorem</u>

- If $\gamma = 0$ and $\delta < 1$ in regular planar networks
- Then no matter how many nodes there are
- No matter how far apart the source and destination are chosen
- A fixed rate R_{min} can be provided for the single-source destination pair

Idea of proof of unboundedness

Linear case: Source at 0, destination at *n*

• Choose
$$P_{ik} = \frac{P}{(k-i)^{\alpha} k^{\beta}}$$

Superlinear transport capacity $\Theta(n^{\theta})$

<u>Theorem</u>

- Suppose $\gamma = 0$
- For every 1/2 < δ < 1, and 1 < θ < 1/ δ
- There is a family of linear networks with

$$C_T = \Theta(n^{\theta})$$

The optimal strategy is coherent multi-stage relaying with interference cancellation

Consider a linear network

- Choose $P_{ik} = \frac{P}{(k-i)^{\alpha}}$ where $1 < \alpha < 3 2\theta \delta$
- A positive rate is feasible from source to destination for all n
 - By using coherent multi-stage relaying with interference cancellation
- To show upper bound
 - Sum of power received by all other nodes from any node j is bounded
 - Source destination distance is at most n^{θ}

Experimental scaling law

Throughput = $2.6/n^{1.68}$ Mbps per node

- No mobility
- No routing protocol overhead
 Routing tables hardwired
- No TCP overhead
 - -UDP
- IEEE 802.11

Why 1/*n*^{1.68}?

- Much worse than optimal capacity = $c/n^{1/2}$
- Worse even than 1/n timesharing
- Perhaps overhead of MAC layer?

Concluding Remarks

- Studied networks with arbitrary numbers of nodes
 - Explicitly incorporated distance in model
 - » Distances between nodes
 - » Attenuation as a function of distance
 - » Distance is also used to measure transport capacity
- Make progress by asking for less
 - Instead of studying capacity region, study the transport capacity
 - Instead of asking for exact results, study the scaling laws
 - » The exponent is more important
 - » The preconstant is also important but is secondary so bound it
 - Draw some broad conclusions
 - » Optimality of multi-hop when absorption or large path loss
 - » Optimality of coherent multi-stage relaying with interference cancellation when no absorption and very low path loss
- Open problems abound
 - What happens for intermediate path loss when there is no absorption
 - The channel model is simplistic fading, multi-path, Doppler,

-

Papers can be downloaded from

http://black.csl.uiuc.edu/~prkumar

For hard copy send email to

prkumar@uiuc.edu