
Code Realizations for Networks

Ralf Koetter, Coordinated Science Lab.,
University of Illinois

e-mail: koetter@csl.uiuc.edu



2

The network....

...

...,Muriel Medard, Tracey Ho, David
Karger, Michelle Effros, Gerhard
Kramer, Irem Koprulu,...
...
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Networks

•What is capacity?

• How robustly can we communi-
cate?

• Do we know the network?

• How do we achieve capacity?

• ??????
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A network

Vertices: V

Edges: E ⊆ V × V , e = (v, u) ∈ E

Edge capacity: C(e)

Network: G = (V,E)

Source nodes: {v1, v2, . . . , vN} ⊆ V

Sink nodes: {u1, u2, . . . , uK} ⊆ V
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Input random processes at v:
(v) = {X(v, 1), X(v, 2), . . . , X(v, µ(v)}

Output random processes at u:
(u) = {Z(u, 1), Z(u, 2), . . . , Z(u, ν(u))}

Random processes on edges: Y (e)

A connection:
c = (v, u, (v, u)), (v, u) ⊆ (v)

A connection is established if
(u) ⊃ (v, u)

Set of connections:

The pair (G, ) defines a network problem.
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The capacity problem

Is the problem (G, ) solvable?

How do we find a solution?

Disclaimer: We are not dealing with probabilistic descriptions of channels which is way too hard for us as can be experienced by

considering a simple problem like the relay channel. Moreover, we are not (really) dealing with the problem of optimizing routing and flows. Listening

to this talk is potentially hazardous and is done according to the respective listeners free will.
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Codes for networks The example

1

1

2

2

RR

S S

= {(Si, Rj, (Sj)), i, j ∈ {1, 2}}

R. Ahlswede, N. Cai, S.-Y.R. Li, R.W.
Yeung, 2000
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Simplyfying Assumptions

C(e) = 1
(links have the same capacity)

H(X(v, i)) = 1
(sources have the same rate)

The X(v, i) are mutually
independent.

Vector symbols of length m are
transmitted and interpreted as el-
ements in F2m.
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Linear network codes

All operations at network nodes are
linear!

e e

e

X(v,i)
Y(e )

Y(e )

1

3

Y(e )1 2
2

3

,

Y (e3) =
∑

i αiX(v, i)+
∑

j=1,2 βjY (ej)
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Definition (Linear Network Coding)

Y (e) =

µ(v)
∑

l=1

αe,lX(v, l) +
∑

e′:head(e′)=tail(e)

βe′,eY (e′),

αe,l, βe′,e ∈ F2m.

A consequence:

Z(v, j) =
∑

e′:head(e′)=v

εe′,jY (e′).
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11

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
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X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input: x = (X(v, 1), X(v, 2), . . . , X(v′, µ(v′)))

Output: z = (Z(u, 1), Z(u, 2), . . . , Z(u′, ν(u′)))

Transfer matrix M : z = xM

ξ = (ξ1, ξ2, . . . , ) =
(. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

Mi,j ∈ F2[ξ].
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An alg. Min-Cut Max-Flow condition

Theorem Let a linear network be
given. The following three state-
ments are equivalent:

1. A point-to-point connection
c = (v, v′, (v, v′)) is possible.

2. The Min-Cut Max-Flow bound) is
satisfied for a rate R(c) = | (v, v′)|.

3. The determinant of the R(c) ×
R(c) transfer matrix M is nonzero
over the ring F2[ξ]

3. ⇒ We have to study the solu-
tion sets of polynomial equations.
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An Example:
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�
= (v1, v4, {X(v1, 1), X(v,2), X(v1, 3)})

A =





αe1,1 αe2,1 αe3,1

αe1,2 αe2,2 αe3,2

αe1,3 αe2,3 αe3,3



 , B =





εe5,1 εe5,2 εe5,3

εe6,1 εe6,2 εe6,3

εe7,1 εe7,2 εe7,3



 .

M = A





βe1,e5 βe1,e4βe4,e6 βe1,e4βe4,e7

βe2,e5 βe2,e4βe4,e6 βe2,e4βe4,e7

0 βe3,e6 βe3,e6



BT .

det(M) = det(A)det(B)

(βe1,e5βe2,e4 − βe2,e5βe1,e5)(βe4,e6βe3,e7 − βe4,e7βe3,e6)

Choose the coefficients so that
det(M ) 6= 0!

Ralf Koetter January 17, 2003
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M1 M M
11

Multicast network

2 31

�
= {(v, u1,

�
(v)), (v, u2,

�
(v)), . . . , (v, uK,

�
(v))}

M is a |
�

(v)| × K|
�

(v)| matrix.

Choose the coefficients in F̄ s.th.
mi(ξ)

def
=det(M1,i(ξ)) 6= 0

Find a solution of ξ0

∏

i mi(ξ) = 1

Ralf Koetter January 17, 2003
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Do we really need coding?

We do not only need codes -

we need all codes!

Sender

Rec. Rec. Rec.1 2 l

k bits

cut

n

,

C is a [ n, k] code with l informa-
tion sets. Each receiver picks out
one information set.

Ralf Koetter January 17, 2003
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network

N sources

K sinks

general

= {(vi, uj, (vi, uj))}

M =









M1,1 M1,2 . . . M1,K
M2,1 M2,2 M2,K
... ...

MN,1 MN,2 . . . MN,K









Mi,j corresponds to
ci,j = (vi, uj, (vi, uj)).

Ralf Koetter January 17, 2003
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Theorem

[Generalized Min-Cut Max-Flow Condition]

Let an acyclic, delay-free linear network problem
(G,

�
) be given and let M = {Mi,j} be the corre-

sponding transfer matrix relating the set of input
nodes to the set of output nodes. The network
problem is solvable if and only if there exists an
assignment of numbers to ξ such that

1. Mi,j = 0 for all pairs (vi, vj) of vertices such
that (vi, vj, � (vi, vj)) 6∈

�
.

2. If
�

contains the connections (vi1, vj, � (vi1, vj)),
(vi2, vj, � (vi2, vj)), . . . , (vi`, vj, � (vi`, vj)) the de-
terminant of

[

MT
i1,j

MT
i2,j

, . . . , MT
i`,j

]

is nonzero.
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Entries in Mi,j that have to evalu-
ate to zero: f1(ξ), f2(ξ), . . . , fL(ξ)

Determinants of submatrices that
have to evaluate to nonzero values:
g1(ξ), g2(ξ), . . . , gL′(ξ)

〈f1(ξ), f2(ξ), . . . , fL(ξ), f0(ξ)
def
= 1−ξ0

L′
∏

i=1

gi(ξ)〉

The central Theorem

Let a linear network problem (G, )
be given. The network problem is
solvable if and only if there exists
a common non-trivial solution to all
polynomial equations fi(ξ) = 0, i =
0, 1, ..., L.

Ralf Koetter January 17, 2003
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� � � � � � � � � � � � �

network

N sources

K sinks

all−to−all

Theorem

Let a linear, acyclic, delay-free net-
work G be given with a set of de-
sired connections

�
= {(vi, uj, � (vi)) : i = 0, 1, . . . N, j = 1, 2, . . . K}

The network problem (G, ) is solv-
able if and only if the Min-Cut Max-

Flow bound is satisfied for any cut
between all source nodes {vi : i =
0, 1, . . . N} and any sink node uj.

Ralf Koetter January 17, 2003
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� � � � � � � � � � � � �
� � � � � � � � � � � � �
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� � � � � � � � � � � � �

network

K sinks

one−to−many−disjoint

one source

Theorem Let a linear, acyclic, delay-free network

G be given with a set of desired connections
�

=

{(v, uj, � (v, uj)) : j = 1, 2, . . .K} such that all col-

lections of random processes are mutually disjoint,

i.e. � (v, uj) ∩ � (v, ui) = ∅ for i 6= j. The net-

work problem is solvable if and only if the Min-Cut

Max-Flow bound is satisfied at a rate | � (v)| for

any cut separating v from the set of sink nodes

{u1, u2, . . . , uK}.
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� � � � � � � � � � � � � �
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� � � � � � � � � � � � �

network

two sinks

one source

one−to−two degraded

Theorem(“Two-level broadcast ”) Let
a acyclic network G be given with
a set of desired connections

= {(v, u1, (v, u1)), (v, u2, (v))

The network problem is solvable if
and only if the Min-Cut Max-Flow bound
is satisfied between v and u1 at a
rate | (v, u1)| and between v and
u2 at a rate | (v)|.
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The robustness problem

Network management and network coding

Finding efficient solutions

T. Ho, M. Médard, R. Koetter, "An information theoretic view of network
management", INFOCOM 2003

T. Ho, R. Koetter, M. Medard, D. Karger and M. Effros, "The Benefits
of Coding over Routing in a Randomized Setting", ISIT 2003

T. Ho, D. Karger, M. Medard and R. Koetter, "Network Coding from a

Network Flow Perspective", ISIT 2003
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How does the network code improve things?

The network as a linear system:

,

Local behaviors, states, and visi-
ble variables make up a state space
realization. (Forney, trellis forma-
tions - Vardy and K.)
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How to visualize the linear system?

01
10
11

00 00
10
01
11

01
10
11

00 00
10
01
11

a b 11
0 0

a=1, b=0

0 0
11

1

1

1

1 1

0

0

,

Embedding a code with generator
matrix:

G =

(

1 0 1 0 1 0
0 1 0 1 0 1

)
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The problem from a coding perspective:

A network problem (G, ) corre-
sponds to a desired behavior of a
linear system on a graph described
by G.

How to embed a given code in a
given graph efficiently, i.e. with
small state spaces.

Help from: Trellis constructions,
Trellis duality, Structure theorems
....

Ralf Koetter January 17, 2003



Problems... . . . 26

The product construction

Kschischang and Sorokine

Linear trellises constructed as “prod-
uct” of simpler trellises:

G1 = (V1, E1), G2 = (V2, E2),
G = G1 ∗ G2 = (V1 ⊕ V2, E1 ⊕ E2)

T

T

R

R

1 1

2 2

T T R R1 12 2

b1 b1 b1

b2 b2 b2

b1 b1 b1b2 b2 b2

* =

* =

,

The “simple” trellises are minimal
trellises for one dimensional linear
spaces.
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The product construction

Is this exhaustive?

For trellises:

* =

,

Ralf Koetter January 17, 2003
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The product construction

For trellis formations:

* =

01
10
11

00 00
10
01
11

11
0 0

1
0 0

10

00 00
10

1
0 0

00

01
01
00

,
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Routing and the product construction

For trellises:

a b

a

a

a b

b

b

b a

*
=

1
0 0

10

00 00
10

1
0 0

00

01
01
00

,

The product construction is equiv-
alent to the “routing” solution for
the network problem.
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Networks for codes - codes for networks

Given a network problem ⇔ we can
associate a linear code with the prob-
lem.

Finding an efficient transmission strat-
egy ⇔ Finding a trellis with small
state spaces

Routing data streams ⇔ Product
construction of trellises.

What is known about the
structure of generalized
trellises?
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Networks for codes - codes for networks

Every linear trellis on a path (con-
ventional trellis) and on a ring (tail-
biting trellis) is composed of one-
dimensional elementary trellises ⇔
No network coding necessary for
these topologies! (Vardy, K.)

Every topology comes with a set of
“primes”, i.e. basic building blocks
into which a linear trellis can be
decomposed with respect to the prod-
uct construction.

0

0
0

0

0

0
1

1

1

1

1

1
0

0

1

0

1

1

,
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Characterizing the “primes” of trel-
lises would give great insight into
linear systems on general graphs!
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State space dimensions: θ = (θ1, θ2, . . . , θ|E|).

Merging edges induces a partial or-
dering among state space realiza-
tions:

s

s’

s

s’
s’’

,

A modest goal: Find minimal real-
izations that are minimal under the
partial ordering induced by merg-
ing!
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Main problem: Mergeability cannot
be decided locally (in contrast to
state space realizations on “Paths”.)

Main duality theorem by Forney is
the main tool for identifying merge-
able vertices.

Controllability and observability gen-
eralize in a non-trivial way!

There exists a polynomial time al-
gorithm to decide if a given state
space realization of a linear behav-
ior contains mergeable vertices!

R.K., “On the representation of Codes
in Forney Graphs”, Festschrift for
the 60th birthday of G.D. Forney,
Jr, 2002
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The example:

01
10
11

00 00
10
01
11

01
10
11

00 00
10
01
11

11
0 0

11
0 0

,

We can work starting from exist-
ing solutions and apply the merging
algorithm to apply network coding
to existing networks!
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Networks for codes - codes for networks

• To each code there corresponds
at least one network problem ⇔
To each network problem corre-
sponds at least one code.

•Network coding is closely related
to the theory of linear systems
on graphs.

• Based on Forney's duality theo-
rem for generalized state space
realization we can give a poly-
nomial time algorithm that de-
cides if a generalized trellis con-
tains mergeable vertices ⇔ Can
a network use less link capacity
by employing coding?
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This is a big open field with many
ramifications ........

............and a lot of fun!

'
Happy St.Patricks's day!
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