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Outline

1. Source-Channel Communication seen from the perspective of

the separation theorem

2. Source-Channel Communication seen from the perspective of

measure-matching
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Source-Channel Communication

Consider the transmission of a discrete-time memoryless source across

a discrete-time memoryless channel.

Source -
S

F -
X

Channel -
Y

G -
Ŝ

Destination

F (Sn) = Xn G(Y n) = Ŝn

The fundamental trade-off is cost versus distortion,

∆ = Ed(Sn, Ŝn)

Γ = Eρ(Xn)

What is the set of

• achievable trade-offs (Γ,∆)?

• optimal trade-offs (Γ,∆)?
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The Separation Theorem

Source -
S

F -
X

Channel -
Y

G -
Ŝ

Destination

F (Sn) = Xn G(Y n) = Ŝn

For a fixed source (pS, d) and a fixed channel (pY |X, ρ):

A cost-distortion pair (Γ,∆) is achievable if and only if

R(∆) ≤ C(Γ).

A cost-distortion pair (Γ,∆) is optimal if and only if

R(∆) = C(Γ),

subject to certain technicalities.

Rate-matching: In an optimal communication system, the minimum

source rate is matched (i.e., equal) to the maximum channel rate.
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Source-Channel Communication in Networks

Simple source-channel network:

Src 2 -
S2

F2
-

X2

Src 1 -
S1

F1
-

X1

Channel

-
Y2

G12
-

Ŝ12, Ŝ22
Dest 2

-
Y1

G1
-

Ŝ11
Dest 1

Trade-off between cost (Γ1,Γ2) and distortion (∆11,∆12,∆22).

Achievable cost-distortion tuples? Optimal cost-distortion tuples?

For the sketched topology, the (full) answer is unknown.
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These Trade-offs Are Achievable:

For a fixed network topology and fixed probability distributions and

cost/distortion functions:

If a cost-distortion tuple satisfies

R(∆1,∆2, . . .) ∩ C(Γ1,Γ2, . . .) 6= ∅,

then it is achievable.

-
R1

6
R2

@
@
@

C
@
@
@

R

When is it optimal?
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Example: Multi-access source-channel communication

Src 2 -
S2 F2

X2 ∈ {0, 1}
�
�
��

Src 1 -
S1 F1

X1 ∈ {0, 1}
@
@
@Rn -
Y = X1 + X2 G12

-

Ŝ1, Ŝ2

Dest

Capacity region of this channel is contained inside R1 + R2 ≤ 1.5.

Goal: Reconstruct S1 and S2 perfectly.

S1 and S2 are correlated:

S1 = 0 S1 = 1

S2 = 0 1/3 1/3

S2 = 1 0 1/3

R1 + R2 ≥ log2 3 ≈ 1.585.

R and C do not intersect.

Yet uncoded transmission works.

This example appears in T. M. Cover, A. El Gamal, M. Salehi, “Multiple access channels with

arbitrarily correlated sources.” IEEE Trans IT-26, 1980.

Michael Gastpar: March 17, 2003.



So what is capacity?

The capacity region is computed assuming independent messages.

In a source-channel context, the underlying sources may be dependent.

MAC example: Allowing arbitrary dependence of the channel inputs,

the capacity is log2 3 = 1.585, ”fixing” the example: R∩ C 6= ∅.

Can we simply redefine capacity appropriately?

Remark: Multi-access with dependent messages is still an open problem.

T. M. Cover, A. El Gamal, M. Salehi, “Multiple access channels with arbitrarily correlated

sources.” IEEE Trans IT-26, 1980.
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Separation Strategies for Networks

In order to retain a notion of capacity:

Src 2 -
S2

F ′2 - F ′′2 -
X2

Src 1 -
S1

F ′1 - F ′′1 -
X1

Channel

-
Y2

G′12
-G′′12

-
Ŝ12, Ŝ22 Dest 2

-
Y1

G′1 - G′′1 -
Ŝ11 Dest 1

Discrete messages

are transmitted reliably

What is the best achievable performance for such a system?

— The general answer is unknown.
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Example: Broadcast

Src -S
F

X

- n?
Z1

-
Y1 G1

-Ŝ1 Dest 1

- n?
Z2

-
Y2 G2

-Ŝ2 Dest 2

S, Z1, Z2 are i.i.d. Gaussian.

Goal: Minimize the mean-

squared errors ∆1 and ∆2.

Denote by ∆∗1 and ∆∗2 the single-

user minima.

∆∗1 and ∆∗2 cannot be achieved si-

multaneously by sending messages

reliably: The messages disturb one

another.

But uncoded transmission achieves

∆∗1 and ∆∗2 simultaneously.

This cannot be fixed by altering the definitions of capacity and/or

rate-distortion regions.
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Alternative approach

Source -
S

F -
X

Eρ(Xn) ≤ Γ

Channel -
Y

G -
Ŝ

Destination

F (Sn) = Xn G(Y n) = Ŝn

A code (F,G) performs optimally if and only if it satisfies

R(∆) = C(Γ) (subject to certain technical conditions).

Equivalently, a code (F,G) performs optimally if and only if

ρ(xn) = c1D(pY n|xn||pY n) + ρ0

d(sn, ŝn) = −c2log2 p(sn|ŝn) + d0(s)

I(Sn; Ŝn) = I(Xn;Y n)

We call this the measure-matching conditions.
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Single-source Broadcast

Src -S
F

X
Chan

-
Y1 G1

-Ŝ1 Dest 1

-
Y2 G2

-Ŝ2 Dest 2

Measure-matching conditions for single-source broadcast:

If the single-source broadcast communication system satisfies

ρ(x) = c
(1)
1 D(pY1|x||pY1) + ρ

(1)
0 = c

(2)
1 D(pY2|x||pY2) + ρ

(2)
0 ,

d1(s, ŝ1) = −c(1)
2 log2 p(s|ŝ1) + d

(1)
0 (s),

d2(s, ŝ2) = −c(2)
2 log2 p(s|ŝ2) + d

(2)
0 (s),

I(X ;Y1) = I(S; Ŝ1), and I(X ;Y2) = I(S; Ŝ2),

then it performs optimally.
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Sensor Network

M wireless sensors measure physical phenomena characterized by S.

Source -
S

-
U1

-
U2

-
UM

F1

X1
�@

F2

X2
�@

FM
XM

�@

-
Y

�@

G -
Ŝ

Dest
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Gaussian Sensor Network

The observations U1, U2, . . . , Uk are noisy versions of S.

Source
S

- -
U1����?

W1

- -
U2����?

W2

- -
UM����?

WM

F1

X1
C
C
C
C
C
C
C
C
C
C
C
C
CW

F2

X2
A
A
A
A
A
AU

FM
XM

�
�
�
�
�
�
�
�
�
�
�
�
��
����?
Z

-
Y

∑M
k=1E|Xk|2 ≤MP

G -
Ŝ

Dest

Michael Gastpar: March 17, 2003.



Gaussian Sensor Network: Bits

Consider the following communication strategy:

Source
S

- -
U1����?

W1

- -
U2����?

W2

- -
UM����?

WM

F ′1 F ′′1Bits
X1

C
C
C
C
C
C
C
C
C
C
C
C
CW

F ′2 F ′′2Bits
X2

A
A
A
A
A
AU

F ′M F ′′MBits
XM

�
�
�
�
�
�
�
�
�
�
�
�
��
����?
Z

-
Y

∑M
k=1E|Xk|2 ≤MP

G′′ G′Bits -
Ŝ

Dest
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Gaussian Sensor Network: Bits (1/2)

Source coding part. CEO problem. See Berger, Zhang, Viswanathan

(1996); Viswanathan and Berger (1997); Oohama (1998).

Src
S

- -
U1����?

W1

- -
U2����?

W2

- -
UM����?

WM

F ′1
T1

F ′2
T2

F ′M
TM

G′ -Ŝ Dest

S ∼ Nc(0, σ
2
S)

and for k = 1, . . . ,M ,

Wk ∼ Nc(0, σ
2
W )

For large Rtot, the be-

havior is

DCEO(Rtot) =
σ2
W

Rtot
.

Michael Gastpar: March 17, 2003.



Gaussian Sensor Network: Bits (2/2)

Channel coding part. Additive white Gaussian multi-access channel:

Rsum ≤ log2

(
1 +

MP

σ2
Z

)
.

However, the codewords may be dependent. Therefore, the sum rate

may be up to

Rsum ≤ log2

(
1 +

M 2P

σ2
Z

)
.

? ? ?

Hence, the distortion for a system that satisfies the rate-matching

condition is at least

Drm(M) ≥ σ2
W

log2

(
1 + M2P

σ2
Z

)
Is this optimal?
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Gaussian Sensor Network: Uncoded transmission

Consider instead the following “coding” strategy:

Source
S

-
U1����?

W1

-
U2����?

W2

-
UM����?

WM

����@@��?
α1

����@@��?
α2

����@@��?
αM

X1
C
C
C
C
C
C
C
C
C
C
C
C
CW

X2
A
A
A
A
A
AU

XM
�
�
�
�
�
�
�
�
�
�
�
�
��
����?
Z

-
Y

∑M
k=1E|Xk|2 ≤MP

G -
Ŝ

Dest
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Gaussian Sensor Network: Uncoded transmission

Strategy: The sensors transmit whatever they measure, scaled to their

power constraint, without any coding at all.

Y [n] =

√
P

σ2
S + σ2

W

(
MS[n] +

M∑
k=1

Wk[n]

)
+ Z[n].

If the “decoder” is the minimum mean-squared error estimate of S

based on Y , the following distortion is incurred:

Proposition 1. Uncoded transmission achieves

D1(MP ) =
σ2
Sσ

2
W

M2

M+(σ2
Z/σ

2
W )(σ2

S+σ2
W )/P

σ2
S + σ2

W

.

This is better than separation (Drm ∝ 1/ logM). In this sense,

uncoded transmission beats capacity. Is it optimal?
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Gaussian Sensor Network: An outer bound

Suppose the decoder has direct access to U1, U2, . . . , UM .

Src
S

- -
U1����?

W1

- -
U2����?

W2

- -
UM����?

WM

G -Ŝ Dest

The smallest distortion for

our sensor network cannot

be smaller than the smallest

distortion for the idealization.

Dmin,ideal =
σ2
Sσ

2
W

Mσ2
S + σ2

W
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Gaussian Sensor Network: Asymptotic optimum

Rate-matching:

Drm(MP ) ≥ σ2
W

log2

(
1 + M2P

σ2
Z

)
Uncoded transmission:

D1(MP ) =
σ2
Sσ

2
W

M2

M+(σ2
Z/σ

2
W )(σ2

S+σ2
W )/P

σ2
S + σ2

W

.

Proposition 2. As the number of sensors becomes large, the

optimum trade-off is

D(MP ) ≥ σ2
Sσ

2
W

Mσ2
S + σ2

W

.
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Gaussian Sensor Network: Conclusions

Two conclusions from the Gaussian sensor network example:

1. Uncoded transmission is asymptotically optimal.

• This leads to a general measure-matching condition.

2. Even for finite M , uncoded transmission considerably

outperforms the best separation-based coding strategies.

• This suggests an alternative coding paradigm for

source-channel networks.
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Sensor Network: Measure-matching

Theorem. If the coding system F1, F2, . . . , FM , G satisfies the cost

constraint Eρ(X1, X2, . . . , XM) ≤ Γ, and

d(s, ŝ) = − log2 p(s|ŝ)
I(S;U1U2 . . . UM) = I(S; Ŝ),

then it performs optimally.

Src -
S

-
U1

-
U2

-
UM

F1
-

X1

F2
-

X2

FM -
XM

Chan -
Y

G -Ŝ Dest
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Proof: Cut-sets

Outer bound on the capacity region of a network:

w
w
w

w

X1

...

XM

�
�

�
�
��

@
@
@
@

@@

HH
H
HH

H

wY

S Sc

If the rates (R1, R2, . . . , RM) are achievable, they must

satisfy, for every cut S:∑
S→Sc

Rk ≤ max
p(x1,x2,...,xM )

I(XS ;YSc|XSc)

Hence, if a scheme satisfies, for some cut S, the above

with equality, then it is optimal (with respect to S).

Remark. This can be sharpened.

If the rates (R1, R2, . . . , RM) are achievable, then

there exists some joint probability distribution

p(x1, x2, . . . , xM) such that for every cut S:∑
S→Sc

Rk ≤ I(XS ;YSc|XSc)

Michael Gastpar: March 17, 2003.



Source-channel Cut-sets (1/2)

Fix the coding scheme (F1, F2, . . . , FM , G). Is it optimal?

Place any “source-channel cut” through the source-channel network.

gS
@
@
@
@
@@

�
�
�
�
��

��
�
��
�

g
g
g

g

U1

...

UM

w
w
w

w

X1

...

XM

�
�

�
�
��

@
@

@
@
@@

HH
HH

HH

wY gŜ

Sufficient condition for optimality:

RS(∆) = C(X1,X2,...,XM )→Y (Γ). Gaussian: D ≥ σ2
Sσ

2
Z

M 2P + σ2
Z

.

Equivalently, using measure-matching conditions,

ρ(x1, x2, . . . , xM) = D(pY |x1,x2...,xM ||pY )

d(s, ŝ) = − log2 p(s|ŝ)
I(S; Ŝ) = I(X1X2 . . . XM ;Y )
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Source-channel Cut-sets (2/2)

Fix the coding scheme (F1, F2, . . . , FM , G). Is it optimal?

Place any “source-channel cut” through the source-channel network.

gS
@
@
@
@
@@

�
�
�
�
��

��
�
��
�

g
g
g

g

U1

...

UM

w
w
w

w

X1

...

XM

�
�

�
�
��

@
@

@
@
@@

HH
HH

HH

wY gŜ

Sufficient condition for optimality:

RS(∆) = CS→(U1,U2,...,UM )(Γ). Gaussian: D ≥ σ2
Sσ

2
W

Mσ2
S + σ2

W

.

Equivalently, using measure-matching conditions,

ρ(s) = D(pU1,U2...,UM |s||pU1,U2...,UM )

d(s, ŝ) = − log2 p(s|ŝ)
I(S; Ŝ) = I(S;U1U2 . . . UM)
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Sensor Network: Measure-matching

Theorem. If the coding system F1, F2, . . . , FM , G satisfies the cost

constraint Eρ(X1, X2, . . . , XM) ≤ Γ, and

d(s, ŝ) = − log2 p(s|ŝ)
I(S;U1U2 . . . UM) = I(S; Ŝ),

then it performs optimally.

Src -
S

-
U1

-
U2

-
UM

F1
-

X1

F2
-

X2

FM -
XM

Chan -
Y

G -Ŝ Dest
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Gaussian Example

1. The uncoded scheme satisfies the condition

d(s, ŝ) = − log2 p(s|ŝ)

for any M since p(s|ŝ) is Gaussian.

More generally, this is true as soon as the sum of the

measurement noises Wk, k = 1, . . . ,M , is Gaussian.

2. For the mutual information, for large M ,

I(S;U1U2 . . . UM)− I(S; Ŝ) ≤ c1 log2

(
1 +

c2

M 2

)M
,

hence the second measure-matching condition is approached as

M →∞.
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Measure-matching as a coding paradigm

Second observation from the Gaussian sensor network example:

2. Even for finite M , uncoded transmission considerably

outperforms the best separation-based coding strategies.

Coding Paradigm. The goal of the coding scheme in the sensor

network topology is to approach

d(s, ŝ) = − log2 p(s|ŝ)
I(S;U1U2 . . . UM) = I(S; Ŝ),

as closely as possible.

The precise meaning of “as closely as possible” remains to be

determined.
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Slightly Extended Topologies

• Communication between the sensors

gS
@
@
@
@
@@

�
�
�
�
��

��
�
��
�

g
g
g

g

U1

...

UM

w
w
w

w

X1

...

XM

�
�
�
�

��

@
@
@
@

@@

HH
H
HH

H

wY gŜ

• Sensors assisted by relays

gS
@
@
@
@
@@

�
�
�
�
��

��
�
��
�

g
g
g

g

U1

...

UM

w
w
w

w

X1

...

XM

w
��
�� R1

L
L
L
L
L
LL

�
�
�
�

��

@
@
@
@

@@

HH
HH

HH

wY gŜ
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Slightly Extended Topologies

Key insight: The same outer bound applies.

Hence,

• the same measure-matching condition applies, and

• in the Gaussian scenario, uncoded transmission, ignoring

– the communication between the sensors, and/or

– the relay,

is asymptotically optimal.

But:

• Communication between the sensors simplifies the task of

matching the measures.

• Relays simplify the task of matching the measures.

Can this be quantified?
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Conclusions

• Rate-matching:

Yields some achievable cost-distortion pairs for arbitrary

network topologies.

• Measure-matching:

Yields some optimal cost-distortion pairs for certain

network topologies, including

∗ single-source broadcast

∗ sensor network

∗ sensor network with communication between the

sensors

∗ sensor network with relays
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What is Information?

Point-to-point:

“Information = Bits”

Network:

“Information = ???”
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