Cooperative Communications in Wireless Systems

Elza Erkip

Wireless Networks

Outline

- Relay channel
 - Relaying in wireless: Use relays for diversity
 - Traditional multihop versus multihop with diversity
- Concept of cooperation: "Virtual" antenna array
- Information theoretic model and analysis
- Cooperative codes

Relay Channel

- Introduced by Ven der Meulen (1971)
- Cover and El Gamal (1979): Inner and outer bounds on the capacity; capacity of degraded relay channel

- Multiple relays:
 - Schein & Gallager
 - Gupta & Kumar
 - Xie & Kumar
 - Reznik, Kulkarni & Verdu
 - Gastpar & Vetterli
 - Gastpar, Kramer & Gupta

Multi-hop Wireless Communications

Multi-hop reduces power requirements and interference

- Si Direct transmission: $P_{total} = P(2d)^{\alpha} = 2^{\alpha} P d^{\alpha}$
- s Relayed transmission: $P_{total} = 2Pd^{\alpha}$
- Current trends:
 - Only consider path loss
 - Destination only processes signal from relay
- What about fading? Use multi-hop for diversity.

Diversity in Multihop

One source/destination, two relays

- Path loss and fading
- Uncoded BPSK, bit by bit processing
 - Relays amplify received signal and forward

Total power divided equally among source and relays

Effect of Multihop Diversity

User Cooperation Diversity

- Diversity through cooperation of mobiles (Sendonaris, Erkip, Aazhang)
- Two main ideas
 - Use relays to provide diversity
 - Collaborative scheme: Both mobiles help each other ("partners")

User Cooperation

- Mobile antennas are omnidirectional
 - Signals transmitted towards the destination can be "overheard" at the partner
 - Partners process this overheard information and re-transmit towards the destination
 - Total resources (power, bandwidth) are same as non-cooperative case
 - Destination processes signals from both mobiles
- Spatial diversity through partner's antenna, a "virtual" antenna array
 - Inter-user channel is noisy!

Approach

- Information theory (Sendonaris, Erkip, Aazhang)
 - A general model illustrating that cooperation results in throughput and diversity gains
 - Some idealized assumptions
- Code design (Stefanov, Erkip)
 - More realistic assumptions
 - Channel codes that exploit user cooperation gains

Information Theoretic Model

- K _{ij}: Fading amplitudes
- Receivers track the fading parameters, transmitters don't

Capacity Analysis

- Assumptions
 - Partners receive and transmit at the same time (same assumption as classical relay of Cover & El Gamal)
 - Transmitters have phase information: Coherent combining is possible
- Model is similar to multiple access channel with generalized feedback
 - DMC and Gaussian (Carleial, Willems et.al.)
- Achievable region under fading

Transmit Signal Structure

- Information $W_1 = (W_{10}, W_{12})$
- Signal $X_1 = (X_{10}, X_{12}, U_1)$
 - $-X_{10}$: Send W_{10} at rate R_{10} to destination (D)
 - X_{12} : Send W_{12} at rate R_{12} to mobile 2 (also heard at D)
 - U₁: Cooperative signal based on (W₁₂,W₁₂) to the BS
- Power allocation: $P_1 = P_{10} + P_{12} + P_{U1}$

Achievable Rate Region with Cooperation

The closure of $\{(R_1, R_2) | R_1 = R_{10} + R_{12}, R_2 = R_{20} + R_{21} \}$ where

$$R_{k0} < E \left\{ C \left(\frac{K_{k0}^{2} P_{k0}}{N} \right) \right\} \quad k = 1, 2$$

$$R_{k\tilde{k}} < E \left\{ C \left(\frac{K_{k\tilde{k}}^{2} P_{k\tilde{k}}}{K_{k\tilde{k}}^{2} P_{k0} + N_{k}} \right) \right\} \quad k = 1, 2$$

$$R_{10} + R_{20} < E \left\{ C \left(\frac{K_{10}^{2} P_{10} + K_{20}^{2} P_{20}}{N} \right) \right\}$$

$$R_{10} + R_{20} + R_{12} + R_{21} < E \left\{ C \left(\frac{K_{10}^{2} P_{1} + K_{20}^{2} P_{2} + 2K_{10} K_{20} \sqrt{P_{U1} P_{U2}}}{N} \right) \right\}$$

for some power assignment

$$P_1 = P_{10} + P_{12} + P_{U1}, P_2 = P_{20} + P_{21} + P_{U2}$$

Achievable Rate Region (Symmetric)

Achievable Rate Region (Asymmetric)

Probability of Outage

Benefits of Cooperation

- Higher data rates
- For both mobiles
- Reduced outage
 - Provides an incentive for relaying
- Increased battery life
- Extended coverage for cellular
- Works even when inter-user channel is bad or one user is closer to the base station

Realistic Constraints

- Hard to transmit/receive at the same time
 - Without cooperation

With cooperation

Cooperation Using Time-Sharing

(Laneman, Tse, Wornell)

- Works for same/separate receivers
- Outage probability analysis for slow fading
- Partner can
 - Amplify and forward
 - Amplifies noise, two level diversity
 - Decode and forward
 - Perfect decoding is a strict constraint, one level diversity
 - Adaptive decode and forward
 - Partner decodes only when it can, two level diversity
- Channel codes for cooperation?

Channel Coding for Cooperation

(Stefanov, Erkip)

- To cooperate, M1 only transmits half of its coded bits.
- This is received at M2 and at the destination.
- M2 decodes M1's information, re-encodes and transmits remaining half of the coded bits.
- M2 forwards only when it has correct information (checked by CRC), otherwise M1 continues.
 - Protocol similar to Hunter & Nosratinia.

Block Fading Model

- Quasi-static channels
 - Block fading when cooperation takes place
- Can use codes designed for block fading channels (Knopp & Humblet)
 - Maximize diversity and coding advantages
- Additional constraints
 - First half of the code has to be good in the quasi-static interuser channel
 - Code has to be good in the quasi-static channel when cooperation does not take place

Cooperative Coding Performance Analysis

Frame error rate with the above cooperation protocol

$$P_f^C = (1 - P_f^{in})P_f^{BF} + P_f^{in}P_f^{QS}$$

$$\leq P_f^{BF} + P_f^{in}P_f^{QS}$$

$$\leq \frac{K_{BF}}{SNR_1SNR_2} + \frac{K_{in}}{SNR_{in}}\frac{K_{QS}}{SNR_1}$$

- P_f^C: FER for the cooperative protocol
- P_f : FER for inter-user channel
- P_f^{BF}: FER for the block fading channel resulting from cooperation
- P_fQS : FER for the direct (non-cooperative) channel
- SNR_i: Received SNR for user i at the destination, i=1,2
- SNR_{in}: Received SNR in the inter-user channel
- K: Code parameters

Cooperative Coding (Similar users)

Cooperative Coding (Asymmetric case)

Effect of Cooperation on Routing

- Traditional routing
 - Only path loss is considered: Choose M3 as relay
- Cooperative diversity
 - For medium-high SNR, M2 results in lower error rate
 - Good inter-user channel dominates

Routing with Cooperative Diversity

Other Related Projects at Poly

- Cooperative space-time coding (Stefanov, Erkip)
 - Cooperative codes for mobiles with multiple antennas
 - Asymmetric: Cooperation among mobiles with different number of antennas (overlay codes)
- Choice of partners: Geometry of cooperation (Lin, Erkip, Stefanov)
- Diversity in relaying protocols (Yuksel, Erkip)
- Visit our web page: eeweb.poly.edu/~elza

References

- 1. A. Sendonaris, E. Erkip and B. Aazhang, "User cooperation diversity-part I: System description." To appear, *IEEE Transactions on Communications*.
- 2. A. Sendonaris, E. Erkip and B. Aazhang, "User cooperation diversity-part II: Implementation aspects and performance analysis." To appear, *IEEE Transactions on Communications.*
- 3. A. Stefanov and E. Erkip, "Cooperative coding for wireless networks." In Proceedings of IEEE Conference on Mobile and Wireless Communications Networks, Stockholm, Sweden, September 2002.
- 4. A. Stefanov and E. Erkip, "On the performance analysis of cooperative space-time coded systems." To appear *IEEE Wireless Communications and Networking Conference (WCNC 2003)*, New Orleans, Lousiana, March 2003.
- 5. A. Stefanov and E. Erkip, "Cooperative space-time coding for wireless networks." To appear, 2003 Information Theory Workshop, Paris, France, April 2003.