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CROSS-LAYER ISSUES

Compression (Layer  6) and Transmission (Layer 1)

• energy efficiency perspective.

• tradeoff between transmission (RF) and processing energy.

• in context of sensor networks, added feature of detection gives a special 
slant to compression

Compression (IT source coding) and Routing (Layer  3)

• coupling of information theory and networking.

• reveals novel trade-offs
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MAIN IDEA
- Multiple Descr iption coding

• different (coupled) representations of source signals.
• each description requires fewer bits than a single description.

- Parallel Routing
• redundant transmission of packet copies over separate routes.
• protects against long delays and/or errors

- Joint Compression/Routing
• send each description over a separate route
• “cancel”  redundancy with compression

- Trade-off study
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BACKGROUND
- Source emits i.i.d. Gaussian variables (0-mean, unit variance).

- D = mean squared error distortion

- R = representation rate (bits/symbol)

-

- Symbols are sent to a destination node; so modify distortion measure

- T: delay

- Think of each symbol as a separate “packet”  of length R bits
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BACKGROUND (Continued) 
- Multiple (i.e. Double) Description Coding 

(Ozarow, ElCamal/Cover, Wyner etal circa ’80-’82)

- Each description is sent to destination over separate route

- ith description has rate Ri, individual mse distortion di, and delay Ti

- d0 is joint distortion
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BACKGROUND (Continued)
- Previous formula describes the boundary of the achievable rate-distortion 

region.
- “ Inside”  the region we have 

- Note : δi →0, no redundancy, “ lean” compression, “effective” rate Ri, 
minimum distortion.
δi →1, maximum redundancy, ineffective compression, “effective” rate
0, maximum distortion

- Choice of δ affects distortion-rate values and representation complexity
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SIMPLE NETWORK MODEL
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AVERAGE DISTORTION

Objective:   Min E[D]

by choice of α, δ1, δ2, q

(for fixed R, C1 = C2 = C,  λ,  ∆)

- Need queuing analysis to express the delay probability
(use M/G/1 formulas)

- Perform Numerical Minimization

- *  = will denotes optimal values
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FIRST RESULTS

- Phase Transition Behavior

q*

λc

E(D*)

1/2

λc

q*

λ λ

- Beyond a critical load value do not mix traffic 
(i.e. dedicate each description completely to its path)

- Below that value mix thoroughly (50-50)

q = 1/2
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FIRST RESULTS (Continued)

λc λ

1/2

α*  = R1/(R1+R2)

Below λc encode symmetrically (no advantage
to differentiate descriptions)

Gradually drop the redundancy
Factor to zero (“ lean”  compression)

Load
(or rate)

ρ1

λc λ

ρ2
- Keep the load on one queue

below saturation and send all 
the remaining traffic to the 
other queue
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INTELLIGENT SWITCH
- drop packets whose sojourns times exceed ∆ (while still in queue).
- only change: “ impatient customer”  queuing behavior

Note:  At heavy loads
intelligent switch with
dumm mixing is worse
than intelligent mixing
with dumm switch

Explanation:  - IS drops packets “uniformly”  at both queues
- Optimal mixing gives up on one queue totally (garbage bag)

but  keeps one queue maximally useful
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PROBING FURTHER
- So far R was fixed (total rate)
- As λ increases, we may be able to control the load by 

manipulating packet lengths without the constraint that 

- If there is an optimal R* , by symmetry we should have

- Also, since both queues would be equally loaded, packets would 
be lost with low probability at both as we decrease R; hence we 
should choose             to minimize d0

- In fact, then, 

- Not optimal

*
* *
1 2 2

R
R R= =

1 2R R fixed+ =

* *

*

1 2 2
log

2

R R

R

−
∗ ∗
1 2

+δ = δ =

∗ ∗
1 2δ , δ

** 2
0 2 Rd −=&



13

CONFIRMATION

( )E D

λc λ

 with R*MDC

 with R*SDC

* &   ( *)MDC IS q q=

Even SDC with optimal R*  outperforms MDC* with IS at 
high loads
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CONFIRMATION (CONTINUED)

*MDC

SDC

*R

λ

- If instead of minimizing d0 we minimize E[D] we find that both R* and

E(D) are indistinguishably close (hence, intuition was good)

- At very low loads (λ → 0), one might expect that the optimum R* might

increase without bound.

- This is not the case (very long packets increase the delay sufficiently

to wipe out distortion gains)
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FURTHER THOUGHTS
- Are these trade-offs extendable to non-Gaussian symbols and non-

trivial networks paths?

- Can we translate the results to practical compression schemes?

- What are the energy implications of the trade-off?  Do we spend 
more or less energy when we use parallel paths with multiple 
descriptions?

- What happens if noise is added in the system?

- What happens in a wireless environment where inadvertent 
multicasting occurs?


