
Linear flow equations for network coding

in the multiple unicast case

Niranjan Ratnakar

Joint work with Ralf Koetter, Tracey Ho

University of Illinois

January 27, 2005



Outline

• Butterfly structure and some observations.

• Generalizing the lessons from the butterfly case.

• Linear equations for general networks.

• Extensions.



B
u
tte

r
fl
y

N
e
tw

o
r
k

P
S
frag

rep
lacem

en
ts

S
1

S
2

D
1

D
2

b
1

b
2

b
1

b
2

b
1
+

b
2

b
1
+

b
2

b
1
+

b
2



Butterfly Network

PSfrag replacements

S1 S2

D1D2

b1

b1

b1



Butterfly Network

PSfrag replacements

S1 S2

D1D2



Butterfly Network

Poisoned flow

request
Remedy

Remedies

PSfrag replacements

S1 S2

D1D2



B
u
tte

r
fl
y

N
e
tw

o
r
k

P
S
frag

rep
lacem

en
ts

S
1

S
2

D
1

D
2 q(1

→
2)

=
−

1
q(2

→
1)

=
−

1

r(1 → 2) = 1
r(2→1)=1

p(1
→

2)
=

−
1

p(2
→

1)
=

−
1

p(1
→

2)
=
−

1
p(2

→
1)

=
−

1



B
u
tte

r
fl
y

N
e
tw

o
r
k

P
S
frag

rep
lacem

en
ts

S
1

D
2 q(1

→
2)

=
−

1

r(1 → 2) = 1

p(1 → 2) = −1

p(1
→

2)
=
−

1

P
S
frag

rep
lacem

en
ts

S
2

D
1

q(2
→

1)
=
−

1

r(2 → 1) = 1

p(2 → 1) = −1p(2
→

1)
=
−

1



Observations

• x(1) is a flow from S1 to D1.

• x(2) is a flow from S2 to D2.



Observations

• x(1) is a flow from S1 to D1.

• x(2) is a flow from S2 to D2.

• p(1 → 2) + q(·) + r(·) forms a loop.



Observations

• x(1) is a flow from S1 to D1.

• x(2) is a flow from S2 to D2.

• p(1 → 2) + q(·) + r(·) forms a loop.

• p(1 → 2) is a ‘virtual’ flow with a ‘host’ x(2).

• q(1 → 2) is a ‘virtual’ flow with a ‘host’ x(1).

• r(1 → 2) is a flow that consumes resources and does

not need a host.



Observations

• x(1) is a flow from S1 to D1.

• x(2) is a flow from S2 to D2.

• p(1 → 2) + q(·) + r(·) forms a loop.

• p(1 → 2) is a ‘virtual’ flow with a ‘host’ x(2).

• q(1 → 2) is a ‘virtual’ flow with a ‘host’ x(1).

• r(1 → 2) is a flow that consumes resources and does

not need a host.

• p(·), q(·), and r(·) are unbroken paths.



Generalizing the idea

• pe(m → n, u) for every edge e. u keeps track of the

‘origin’ of the poison.

• Similarly qe(m → n, u) and re(m → n, u).

• We will search for butterfly structures.



Searching for Butterfly structures

Allow loops made of p(m → n, u), q(m → n, u), and

r(m → n, u). For all nodes v, u, and for all flows m and

n.
∑

e:head(e)=v

pe(m → n, u) + qe(m → n, u) + re(m → n, u)

=
∑

e:tail(e)=v

pe(m → n, u) + qe(m → n, u) + re(m → n, u)



Searching for Butterfly structures

Ensure that each of p(m → n, u), q(m → n, u), and

r(m → n, u) is an unbroken path. At node u

∑

e:head(e)=u

qe(m → n, u) ≥
∑

e:tail(e)=u

qe(m → n, u) (1)

At any other node v,
∑

e:head(e)=v

qe(m → n, u) ≤
∑

e:tail(e)=v

qe(m → n, u) (2)



Searching for Butterfly structures

Ensure that each of p(m → n, u), q(m → n, u), and

r(m → n, u) is an unbroken path. At node u

∑

e:head(e)=u

pe(m → n, u) ≤
∑

e:tail(e)=u

pe(m → n, u) (3)

At any other node v,
∑

e:head(e)=v

pe(m → n, u) ≥
∑

e:tail(e)=v

pe(m → n, u) (4)



Searching for Butterfly structures

• If m-th and n-th flows overlap, “generate” poison

(and consequently the loops).

• Ensure that a maximum of two flows are overlapping.

This ensures that the butterfly structures are disjoint.



List of equations

xe(n) is a flow of the desired rate from Sn to Dn.

pe(n → m, u) = pe(m → n, u) if tail(e) = u (5)

∑

u

∑

m

max(pe(m → n, u), pe(n → m, u)) +
n∑

i=1

xe(i) ≤ ze

+
∑

u

∑

m

(re(m → n, u) + re(n → m, u)) (6)



Virtual hosts

xe(n) +
∑

u

∑

m

pe(m → n, u) + qe(m → n, u) ≥ 0 (7)

A solution to these equations can be used to identify the

butterfly structures and a network coding solution can be

computed.



Extensions

• Investigate the packing of more complicated

structures.

• Allow for multiple poisoning (might need coding over

greater field sizes).

• Investigate the performance of the solution on

practical networks.


