Secure Network Coding via Filtered Secret Sharing

Jon Feldman, Tal Malkin, Rocco Servedio, Cliff Stein (Columbia University)

{jonfeld@ieor, tal@cs, rocco@cs, cliff@ieor}.columbia.edu

- Network coding: new model of transmission...
 - ...how do we make it secure?
 - 1. Cai and Yeung[02]
 - wire-tap adversary: can look at any k edges.
 - ◆ Suff. conditions for ∃ secure multicast code.
 - 2. Jain[04]: More precise cond. (one terminal).
 - 3. Ho, Leong, Koetter, Médard, Effros, Karger [04]: Byzantine modification detection.

- Network coding: new model of transmission...
 - ...how do we make it secure?
 - 1. Cai and Yeung[02]
 - wire-tap adversary: can look at any k edges.
 - ◆ Suff. conditions for ∃ secure multicast code.
 - 2. Jain[04]: More precise cond. (one terminal).
 - 3. Ho, Leong, Koetter, Médard, Effros, Karger [04]: Byzantine modification detection.
- This talk: precise analysis of wire-tap adversary, balance between security, rate, edge bandwidth.
- Related: robustness [Koetter Médard 02].

Making our Example Secure

- Use $\mathbb{F}_3 = \{0, 1, 2\}.$
 - Less ambitious goal: Send one symbol $b \in \mathbb{F}_3$ to both sinks.
- Choose $r \in \mathbb{F}_3$ randomly.
- Can define symbols s.t.
 any single wire-tapper
 learns nothing about b,
 both sinks can compute b.

Given: Network G = (V, E), source $s \in V$, sinks $T \subseteq V$. min-cut value = $n = \min_i \kappa_i$.

Goal: get message $m \in \mathbb{F}_q^n$ to every sink.

Given: Network G = (V, E), source $s \in V$, sinks $T \subseteq V$. min-cut value = $n = \min_i \kappa_i$.

- Goal: get message $m \in \mathbb{F}_q^n$ to every sink.
- Network code:
 - Define coding vectors $v[e] \in \mathbb{F}_q^n$ for each edge.
 - Edge carries symbol $m \cdot v[e]$.

Given: Network G = (V, E), source $s \in V$, sinks $T \subseteq V$. min-cut value = $n = \min_i \kappa_i$.

- Goal: get message $m \in \mathbb{F}_q^n$ to every sink.
- Network code:
 - Define coding vectors $v[e] \in \mathbb{F}_q^n$ for each edge.
 - Edge carries symbol $m \cdot v[e]$.

Feasibility of transmission: (i) Every v[b, c] spanned by {v[a, b]}_a (or a = s).

Given: Network G = (V, E), source $s \in V$, sinks $T \subseteq V$. min-cut value = $n = \min_i \kappa_i$.

- Goal: get message $m \in \mathbb{F}_q^n$ to every sink.
- Network code:
 - Define coding vectors $v[e] \in \mathbb{F}_q^n$ for each edge.
 - Edge carries symbol $m \cdot v[e]$.
- Feasibility of transmission:
 - (i) Every v[b,c] spanned by $\{v[a,b]\}_a$ (or a = s).
- Recoverability at sinks:

(ii) For all $t \in T$, the vectors $\{v[a,t]\}_a$ span \mathbb{F}_q^n .

- Adversary has access to any set of k edges,
 - knows symbol transmitted along edge,
 - knows network code, topology,
 - has unlimited computational power.

- Adversary has access to any set of k edges,
 - knows symbol transmitted along edge,
 - knows network code, topology,
 - has unlimited computational power.
- Source allowed to generate random symbols (r).
 - (Jain [04]: random bits at intermediate nodes)

- Adversary has access to any set of k edges,
 - knows symbol transmitted along edge,
 - knows network code, topology,
 - has unlimited computational power.
- Source allowed to generate random symbols (r).
 - (Jain [04]: random bits at intermediate nodes)
- Task: design function m = f(x, r) at source, coding vectors on edges s.t.:
 - Coding vectors satisfy feasibility,
 - Information x recoverable at each sink,
 - Information x secure against adversary.

- Adversary has access to any set of k edges,
 - knows symbol transmitted along edge,
 - knows network code, topology,
 - has unlimited computational power.
- Source allowed to generate random symbols (r).
 - (Jain [04]: random bits at intermediate nodes)
- Task: design function m = f(x, r) at source, coding vectors on edges s.t.:
 - Coding vectors satisfy feasibility,
 - Information x recoverable at each sink,
 - Information x secure against adversary.
- Goal: information-theoretic security.

We study possible trade-offs between security, rate and bandwidth:

Security = k = # edges tapped < $n = \min_i \kappa_i$. Rate = t = # information symbols multicast. Edge Bandwidth = $\log q$, where symbols in \mathbb{F}_q . We study possible trade-offs between security, rate and bandwidth:

Security = k = # edges tapped < $n = \min_i \kappa_i$. Rate = t = # information symbols multicast. Edge Bandwidth = $\log q$, where symbols in \mathbb{F}_q .

• Easy to show:
$$t \le n - k$$
.

We study possible trade-offs between security, rate and bandwidth:

Security = k = # edges tapped < $n = \min_i \kappa_i$. Rate = t = # information symbols multicast. Edge Bandwidth = $\log q$, where symbols in \mathbb{F}_q .

- Easy to show: $t \le n k$.
- Cai and Yeung [02]: If $q > \binom{|E|}{k}$, can send t = n k symbols securely.
 - Construction time $\approx \binom{|E|}{k}$.

Our Results

If you give up a little capacity, bandwidth requirement reduced significantly:

Thm: For any c > 1, if $q \ge |E|^{\Omega(\frac{1}{c-1})}$, can send t = n - ck symbols securely.

- Algorithm: poly-time, secure w.h.p.
- If $k = \Theta(|E|)$, only need $q \ge 2^{\Omega(\frac{1}{c-1})}$.

Our Results

If you give up a little capacity, bandwidth requirement reduced significantly:

Thm: For any c > 1, if $q \ge |E|^{\Omega(\frac{1}{c-1})}$, can send t = n - ck symbols securely.

- Algorithm: poly-time, secure w.h.p.
- If $k = \Theta(|E|)$, only need $q \ge 2^{\Omega(\frac{1}{c-1})}$.
- If you do not give up capacity, then bandwidth might have to be large:

Thm: If t = n - k, then there are examples where all solutions (using this method) must have $q \gtrsim |E|^{\sqrt{k}}$.

Relation w/ Cai & Yeung

Core Lemma of Cai and Yeung: If one can construct a matrix with certain independence properties relative to the coding vectors, then the network code can be altered to achieve security.

Relation w/ Cai & Yeung

- Core Lemma of Cai and Yeung: If one can construct a matrix with certain independence properties relative to the coding vectors, then the network code can be altered to achieve security.
- Our extensions:
 - Independence properties are also necessary.
 - Using orthogonal space, re-cast as coding theory problem.
 - Give up some capacity to make coding problem solvable.
 - Use necessary direction, covering radius, to prove negative result.
 - Observation: don't alter code, just input.

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Set
$$m = f(x, r)$$
, with info $x \in \mathbb{F}_q^t$, random $r \in \mathbb{F}_q^\ell$.

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Set m = f(x, r), with info $x \in \mathbb{F}_q^t$, random $r \in \mathbb{F}_q^\ell$.

Send message m normally using network code.

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Set m = f(x, r), with info $x \in \mathbb{F}_q^t$, random $r \in \mathbb{F}_q^\ell$.

- Send message m normally using network code.
- Security condition: If adversary looks at any k edges, can learn nothing about x.

(More formally, for all sets $E' \subset E$ with $|E'| \leq k$, If r is a random vector in \mathbb{F}_q^{ℓ} , the random variable $(f(x,r) \cdot v[e])_{e \in E'}$ is independent of x.)

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Set m = f(x, r), with info $x \in \mathbb{F}_q^t$, random $r \in \mathbb{F}_q^\ell$.

- Send message m normally using network code.
- Security condition: If adversary looks at any k edges, can learn nothing about x.

(More formally, for all sets $E' \subset E$ with $|E'| \leq k$, If r is a random vector in \mathbb{F}_q^{ℓ} , the random variable $(f(x,r) \cdot v[e])_{e \in E'}$ is independent of x.)

Recoverability, feasibility follow immediately (as long as x can be determined from f(x, r)).

Given a linear solution $(v[e])_{e \in E}$ to a network coding problem, can we use it securely?

Set m = f(x, r), with info $x \in \mathbb{F}_q^t$, random $r \in \mathbb{F}_q^\ell$.

- Send message *m* normally using network code.
- Security condition: If adversary looks at any k edges, can learn nothing about x.

(More formally, for all sets $E' \subset E$ with $|E'| \leq k$, If r is a random vector in \mathbb{F}_q^{ℓ} , the random variable $(f(x,r) \cdot v[e])_{e \in E'}$ is independent of x.)

- Recoverability, feasibility follow immediately (as long as x can be determined from f(x, r)).
- Advantage: don't need to alter network code.

Secret Sharing (Shamir)

- Dealer has "secret".
- Distribute shares s_1, \ldots, s_n s.t.
 - ♦ Given any k shares, can recover secret.
 - Given any k 1 shares, learn nothing.
- Computational/info-theoretic security
- "Access pattern" for recoverability/security.

Simple case: single source/sink, n parallel edges, adversary has any set of k edges.

• Modest goal t = 1: send one symbol $x \in \mathbb{F}_q$.

Connection to Secret Sharing

Suppose $v[e_i] = (0, 0, \dots, 0, 1, 0, \dots, 0)$.

 $\iff f(x,r)$ is the "dealer" in secret sharing.

- Encoding:
 - Choose $(r_1, \ldots r_k)$ at random.
 - Let $p(z) = x + r_1 z + r_2 z^2 + \dots + r_k z^k$
 - Set message $m = (p(\alpha_1), \ldots, p(\alpha_n))$.
 - (Encode (x,r) using a Reed-Solomon code.)

Connection to Secret Sharing

Suppose $v[e_i] = (0, 0, \dots, 0, 1, 0, \dots, 0)$.

 $\iff f(x,r)$ is the "dealer" in secret sharing.

Encoding:

- Choose $(r_1, \ldots r_k)$ at random.
- Let $p(z) = x + r_1 z + r_2 z^2 + \dots + r_k z^k$
- Set message $m = (p(\alpha_1), \ldots, p(\alpha_n))$.
- (Encode (x,r) using a Reed-Solomon code.)

Decoding:

- Knowing all $p(\alpha_i)$ reveals p (interpolation).
- Knowing k or fewer m_i 's tells you nothing.
- Works for any $k \leq n 1$.

"Classical" secret sharing: adversary has k shares.

- "Classical" secret sharing: adversary has k shares.
- "Filtered" secret sharing:
 - "Menu" of N lin. combos of all n shares
 - Adversary chooses k items from the menu

- "Classical" secret sharing: adversary has k shares.
- "Filtered" secret sharing:
 - "Menu" of N lin. combos of all n shares
 - \blacklozenge Adversary chooses k items from the menu
- Secret is $x \in \mathbb{F}_q^t$

- "Classical" secret sharing: adversary has k shares.
- "Filtered" secret sharing:
 - "Menu" of N lin. combos of all n shares
 - Adversary chooses k items from the menu

Secret is
$$x \in \mathbb{F}_q^t$$

- Given: *n*-by-*N* full-rank "filter" matrix *V* over \mathbb{F}_q .
- Find: Function f: 𝔽^t_q × 𝔽^ℓ_q → 𝔽ⁿ_q such that:
 For all n-by-k submatrices V' of V,
 over random r ← 𝔽^ℓ_q,
 we have f(x,r) · V' indep. of x (∀x).

Given: *n*-by-*N* full-rank "filter" matrix *V* over F_q.
Find: Function *f* : F^t_q × F^ℓ_q → Fⁿ_q such that: For all *n*-by-*k* submatrices *V'* of *V*, over random *r* ← F^ℓ_q, we have *f*(*x*, *r*) · *V'* indep. of *x*.

- Classical: special case t = 1, N = n, V = I.
- For network coding:
 - N = |E|, V is n-by-|E| matrix of coding vectors.
 - Ignores network topology.

Design of Linear Error-Correcting Codes

- Code C_G = linear subspace generated by the rows of β -by-N matrix G.
- Distance(C_G) = $\min_{y \in C_G} \Delta(y, 0^n)$.
- Goal in coding theory:
 - For given rate β/N , find code with large distance.

Design of Linear Error-Correcting Codes

- Code C_G = linear subspace generated by the rows of β -by-N matrix G.
- Distance(C_G) = $\min_{y \in C_G} \Delta(y, 0^n)$.
- Goal in coding theory:
 - For given rate β/N , find code with large distance.

- Generalization:
 - Designed code must be far from 0ⁿ, and some other given points.

Generalized Coding Problem

■ For generators *A*, *B*, define:

$$\Delta_s(A,B) \equiv \min_{y \in C_A, \ y' \in C_B, \ y' \neq \mathbf{0}} \Delta(y,y')$$

- Note: Asymmetric
- Note: $\Delta_s(A, B) \leq \min\text{-dist}(C_B)$

Generalized Coding Problem

For generators *A*, *B*, define:

$$\Delta_s(A,B) \equiv \min_{y \in C_A, \ y' \in C_B, \ y' \neq \mathbf{0}} \Delta(y,y')$$

- Note: Asymmetric
- Note: $\Delta_s(A, B) \leq \min\text{-dist}(C_B)$

"Span Distance Problem" (over field \mathbb{F}_q): Given an α -by-N matrix A, find a β -by-Nmatrix B where $\Delta_s(A, B) > k$.

Generalized Coding Problem

■ For generators *A*, *B*, define:

$$\Delta_s(A,B) \equiv \min_{y \in C_A, \ y' \in C_B, \ y' \neq \mathbf{0}} \Delta(y,y')$$

- Note: Asymmetric
- Note: $\Delta_s(A, B) \leq \min\text{-dist}(C_B)$

"Span Distance Problem" (over field \mathbb{F}_q): Given an α -by-N matrix A, find a β -by-Nmatrix B where $\Delta_s(A, B) > k$.

Goal: Design code C_B with distance > k to every codeword in C_A.

Filtered Secret sharing \iff Span Distance

Filtered secret sharing (linear f) is a special case of the span distance problem:

 \exists (linear) f.s.s. solution f with t = n - ck \iff (for all c > 1) \exists solution to the span distance problem with • $A = V^{\perp}$, (A generates null space of V) • $\beta = t$, • Required distance = k.

Parameter $c \ge 1$ for network coding application: amount of capacity given up.

Positive result

Given any A, choose B randomly.

Positive result

- Given any A, choose B randomly.
- Analysis like random lin. codes on G-V bound:
 - Each vector in C_B has $\leq |C_A| \text{Vol}_q(k, N)/q^N$ prob. of having dist. $\leq k$ from C_A .
 - Union bound over q^{β} codewords C_B :

Random *B* has $\Delta_s(A, B) > k$ w/ prob.

$$\geq 1 - q^{\beta} q^{\alpha} q^{-N} \operatorname{Vol}_{q}(k, N)$$
$$= 1 - q^{-ck} \operatorname{Vol}_{q}(k, N)$$

Positive result

- Given any A, choose B randomly.
- Analysis like random lin. codes on G-V bound:
 - Each vector in C_B has $\leq |C_A| \text{Vol}_q(k, N)/q^N$ prob. of having dist. $\leq k$ from C_A .
 - Union bound over q^{β} codewords C_B :

Random *B* has $\Delta_s(A, B) > k$ w/ prob.

$$\geq 1 - q^{\beta} q^{\alpha} q^{-N} \operatorname{Vol}_{q}(k, N)$$
$$= 1 - q^{-ck} \operatorname{Vol}_{q}(k, N)$$

- In general, $\Pr > 0$ if $q > N^{\Omega(\frac{1}{c-1})}$.
- For $k = \Theta(N)$, need only $q > 2^{\Omega(1/(c-1))}$.

• Covering radius(C_A) = $\max_{z \in \mathbb{F}_q^N} \Delta(z, C_A)$.

• Covering radius(
$$C_A$$
) = $\max_{z \in \mathbb{F}_q^N} \Delta(z, C_A)$.

If C_A has covering radius $k \implies \text{no } b \in \mathbb{F}_q^N$ (let alone subspace C_B) has dist > k from C_A .

• Covering radius(
$$C_A$$
) = $\max_{z \in \mathbb{F}_q^N} \Delta(z, C_A)$.

- If C_A has covering radius $k \implies \text{no } b \in \mathbb{F}_q^N$ (let alone subspace C_B) has dist > k from C_A .
- Setting c = 1, using result of [Cohen, Frankl 85]:

Thm:
$$\forall \alpha, \beta$$
 S.t. $(\alpha = N - \frac{\log N}{\log q} - \frac{\log \operatorname{Vol}_q(k,N)}{\log q} + 2\log N + \log q + \log \ln q)$
and $(k + \beta < N - \alpha = \frac{\log N}{\log q} + \frac{\log \operatorname{Vol}_q(k,N)}{\log q} - 2\log N - \log q - \log \ln q), \exists A$ S.t.
 $\nexists B$ where $\Delta_s(A, B) > k = N - \alpha - \beta$.

• Covering radius(
$$C_A$$
) = $\max_{z \in \mathbb{F}_q^N} \Delta(z, C_A)$.

- If C_A has covering radius $k \implies \text{no } b \in \mathbb{F}_q^N$ (let alone subspace C_B) has dist > k from C_A .
- Setting c = 1, using result of [Cohen, Frankl 85]:

Thm:
$$\forall \alpha, \beta$$
 s.t. $(\alpha = N - \frac{\log N}{\log q} - \frac{\log \operatorname{Vol}_q(k,N)}{\log q} + 2\log N + \log q + \log \ln q)$
and $(k+\beta < N-\alpha = \frac{\log N}{\log q} + \frac{\log \operatorname{Vol}_q(k,N)}{\log q} - 2\log N - \log q - \log \ln q), \exists A$ s.t.
 $\nexists B$ where $\Delta_s(A, B) > k = N - \alpha - \beta$.

■ ∃ reasonable settings of α, β, k , where $\exists A$ s.t. $q \ge N^{\Omega(\sqrt{k}/\log k)}$ if *B* exists. (Contrast to C/Y upper bound $\binom{N}{k}$.) Feldman, Malkin, Servedio, Stein: Secure Network Coding via Filtered Secret Sharing – p.19/21

Conclusions

- Given a fixed linear network code, the problem of making it secure (using linear filtered secret sharing) is a generalized [classical] code design problem.
- To achieve security: trade-off between rate (t = n ck) and required link bandwidth $(\log q)$.
 - Sacrificing small amount of capacity allows large savings in required bandwidth.
- Secret sharing can be extended from

 [adversary gets ≤ k shares], to
 [adversary gets ≤ k linear combinations
 (from a given set) of all n shares].

Future Work

- Better upper/lower bounds (c = 1, or in general).
- Consider (network topology, code design, security, robustness) simultaneously.
- Allow more power at nodes [Jain: random bits].
- Relax notion of security [Jain: computationally bounded adversary].
- Different adversaries, non-linear network codes, non-multicast?