Network Routing Capacity

Jillian Cannons (University of California, San Diego) Randy Dougherty (Center for Communications Research, La Jolla) Chris Freiling (California State University, San Bernardino) Ken Zeger

(University of California, San Diego)

(Detailed results found in:

- R. Dougherty, C. Freiling, and K. Zeger
 "Linearity and Solvability in Multicast Networks" *IEEE Transactions on Information Theory* vol. 50, no. 10, pp. 2243-2256, October 2004.
- R. Dougherty, C. Freiling, and K. Zeger
 "Insufficiency of Linear Coding in Network Information Flow" *IEEE Transactions on Information Theory* (submitted February 27, 2004, revised January 6, 2005).
- J. Cannons, R. Dougherty, C. Freiling, and K. Zeger "Network Routing Capacity" *IEEE/ACM Transactions on Networking* (submitted October 16, 2004).

Manuscripts on-line at: *code.ucsd.edu/zeger*

Definitions

- An *alphabet* is a finite set.
- A <u>network</u> is a finite d.a.g. with source messages from a fixed alphabet and message demands at sink nodes.
- A network is *degenerate* if some source message cannot reach some sink demanding it.

Definitions - scalar coding

- Each edge in a network carries an alphabet symbol.
- An *edge function* maps in-edge symbols to an out-edge symbol.
- A *decoding function* maps in-edge symbols at a sink to a message.
- A *solution* for a given alphabet is an assignment of edge functions and decoding functions such that all sink demands are satisfied.
- A network is *solvable* if it has a solution for some alphabet.
- A solution is a *routing solution* if the output of every edge function equals a particular one of its inputs.
- A solution is a *linear solution* if the output of every edge function is a linear combination of its inputs (typically, finite-field alphabets are assumed).

Definitions - vector coding

- Each edge in a network carries a vector of alphabet symbols.
- An *edge function* maps in-edge vectors to an out-edge vector.
- A *decoding function* maps in-edge vectors at a sink to a message.
- A network is <u>vector solvable</u> if it has a solution for some alphabet and some vector dimension.
- A solution is a *vector routing solution* if every edge function's output components are copied from (fixed) input components.
- A <u>vector linear solution</u> has edge functions which are linear combinations of vectors carried on in-edges to a node, where the coefficients are matrices.
- A vector routing solution is <u>reducible</u> if it has at least one component of an edge function which, when removed, still yields a vector routing solution.

Definitions - (k, n) **fractional coding**

- Messages are vectors of dimension k.
 Each edge in a network carries a vector of at most n alphabet symbols.
- A (k, n) <u>fractional linear solution</u> has edge functions which are linear combinations of vectors carried on in-edges to a node, where the coefficients are rectangular matrices.
- A (k, n) fractional solution is a *fractional routing solution* if every edge function's output components are copied from (fixed) input components.
- A (k, n) fractional routing solution is <u>minimal</u> if it is not reducible and if no (k, n') fractional routing solution exists for any n' < n.

Definitions - capacity

7

- The ratio k/n in a (k, n) fractional routing solution is called an *achievable routing rate* of the network.
- The *routing capacity* of a network is the quantity

 $\epsilon = \sup\{$ all achievable routing rates $\}.$

• Note that if a network has a routing solution, then the routing capacity of the network is at least 1.

Some prior work

- Some solvable networks do not have routing solutions (AhCaLiYe 2000).
- Every solvable multicast network has a scalar linear solution over some sufficiently large finite field alphabet (LiYeCa 2003).
- If a network has a vector routing solution, then it does not necessarily have a scalar linear solution (MéEfHoKa 2003).
- For multicast networks, solvability over a particular alphabet does not imply scalar linear solvability over the same alphabet (RaLe, MéEfHoKa, Ri 2003, DoFrZe 2004).
- For non-multicast networks, solvability does not imply vector linear solvability (DoFrZe 2004).
- For some networks, the size of the alphabet needed for a solution can be significantly reduced using fractional coding (RaLe 2004).

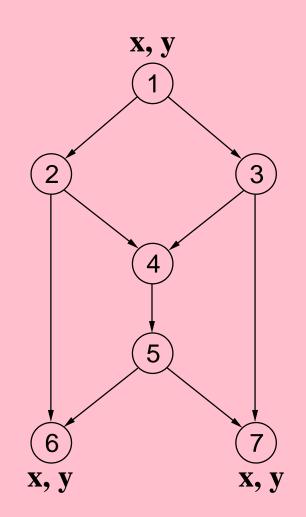
Our results

- Routing capacity definition.
- Routing capacity of example networks.
- Routing capacity is always achievable.
- Routing capacity is always rational.
- Every positive rational number is the routing capacity of some solvable network.
- An algorithm for determining the routing capacity.

Some facts

- Solvable networks may or may not have routing solutions.
- Every non-degenerate network has a (k, n) fractional routing solution for some k and n (e.g. take k = 1 and n equal to the number of messages in the network).

Example of routing capacity



This network has a linear coding solution but no routing solution.

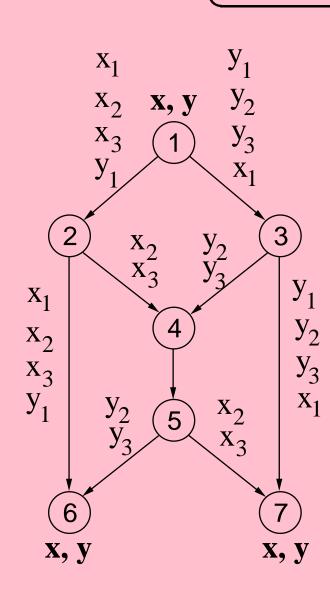
11

Each of the 2k message components must be carried on at least two of the edges $e_{1,2}, e_{1,3}, e_{4,5}$. Hence, $2(2k) \leq 3n$, and so $\epsilon \leq 3/4$.

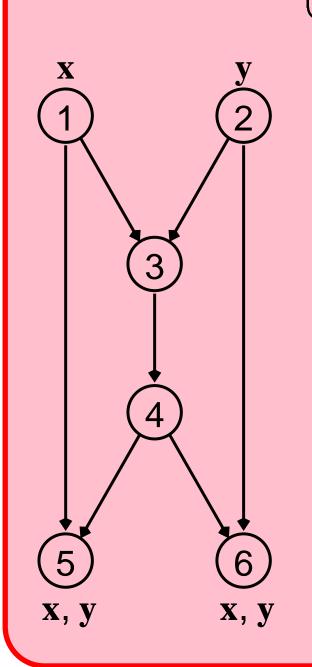
Now, we will exhibit a (3,4) fractional routing solution...

Example of routing capacity continued...

Let k = 3 and n = 4. This is a fractional routing solution. Thus, 3/4 is an achievable routing rate, so $\epsilon \ge 3/4$. Therefore, the routing capacity is $\epsilon = 3/4$.



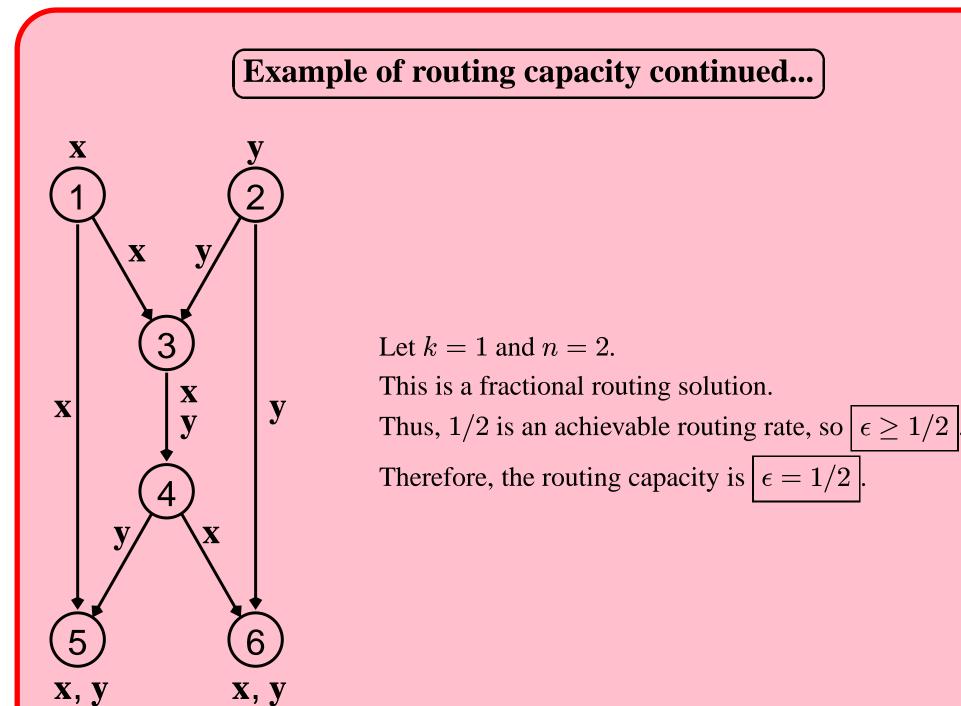
Example of routing capacity



The only way to get \mathbf{x} to n_6 is $n_1 \rightarrow n_3 \rightarrow n_4 \rightarrow n_6$. The only way to get \mathbf{y} to n_5 is $n_2 \rightarrow n_3 \rightarrow n_4 \rightarrow n_5$.

 $e_{3,4}$ must have enough capacity for both messages.

Hence, $2k \leq n$, so $\epsilon \leq 1/2$.



Example of routing capacity

a, b

a, d

a, c

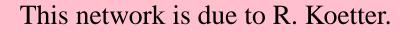
c,d

2

b, **c**

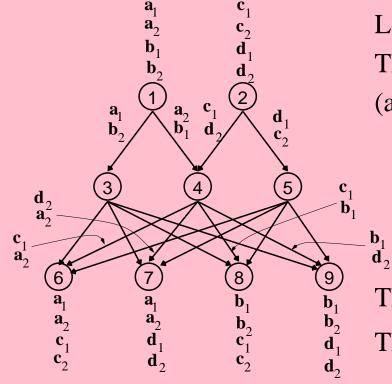
5

(9) b, d



Each source must emit at least 2k components and the total capacity of each source's two out-edges is 2n. Thus, $2k \leq 2n$, yielding $\epsilon \leq 1$.

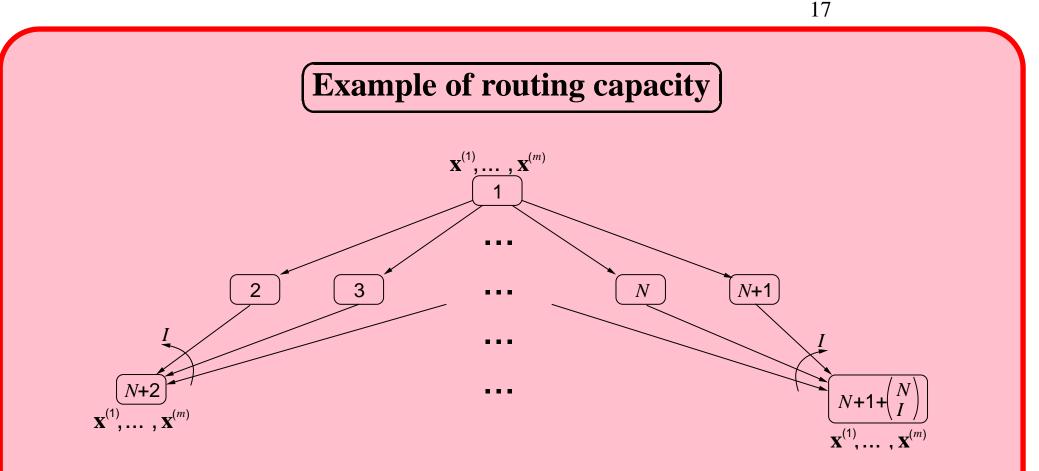
Example of routing capacity continued...



Let k = 2 and n = 2.

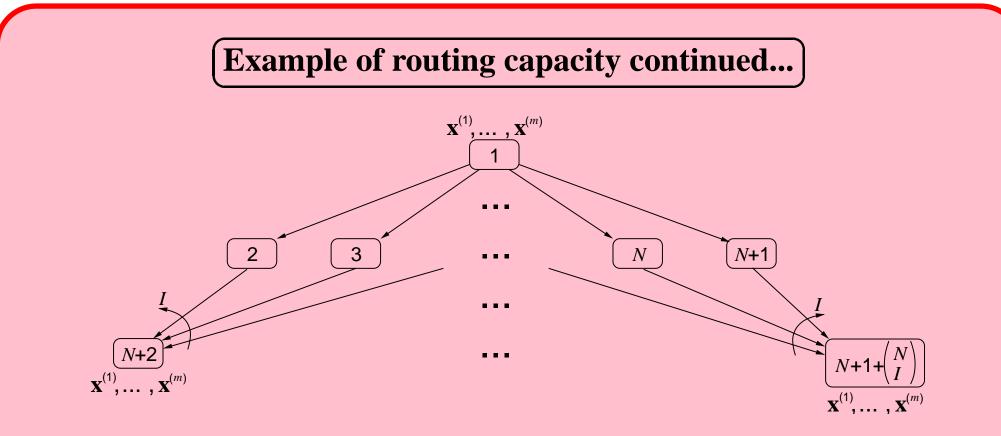
This is a fractional routing solution (as given in MéEfHoKa, 2003).

Thus, 2/2 is an achievable routing rate, so $\epsilon \ge 1$. Therefore, the routing capacity is $\epsilon = 1$.



Each node in the 3rd layer receives a unique set of *I* edges from the 2nd layer.

Every subset of I nodes in layer 2 must receive all mk message components from the source. Thus, each of the mk message components must appear at least N - (I - 1) times on the N out-edges of the source. Since the total number of symbols on the N source out-edges is Nn, we must have $mk(N - (I - 1)) \leq Nn$ or equivalently $k/n \leq N/(m(N - I + 1))$. Hence, $\epsilon \leq N/(m(N - I + 1))$.

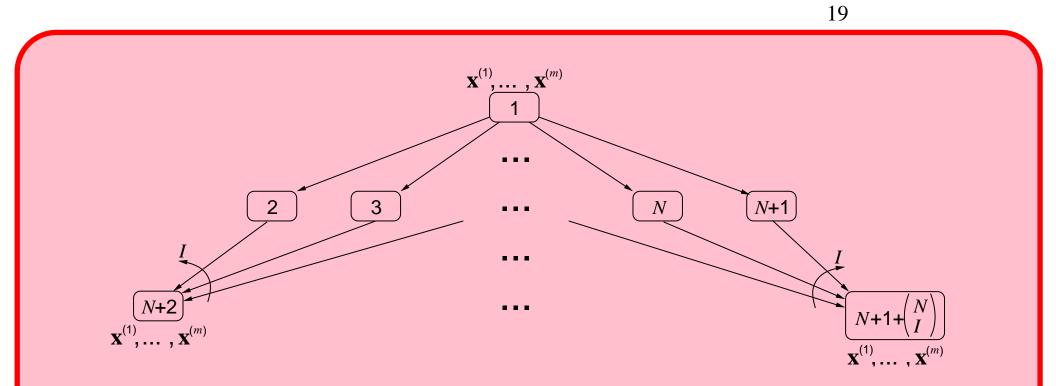


Let
$$k = N$$
 and $n = m(N - I + 1)$

There is a fractional routing solution with these parameters (the proof is somewhat involved and will be skipped here).

Therefore, N/(m(N - I + 1)) is an achievable routing rate, so $\epsilon \geq N/(m(N - I + 1))$.

Therefore, the routing capacity is $\epsilon = N/(m(N - I + 1))$



Some special cases of the network:

• m = 5, N = 12, I = 8 (AhRi 2004)

No binary scalar linear solution exist. It has a non-linear binary scalar solution using a (5, 12, 5)Nordstrom-Robinson error correcting code. We compute that the routing capacity is $\epsilon = 12/25$

• m = 2, N = p, I = 2 (RaLe 2003)

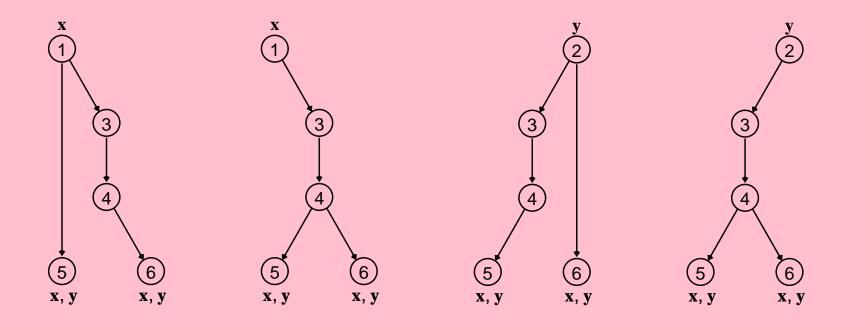
The network is solvable, if the alphabet size is at least equal to the square root of the number of sinks. We compute that the routing capacity is $\epsilon = p/(2(p-1))$.

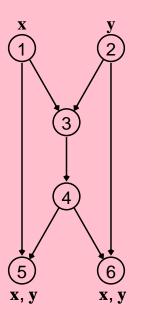
• m = 2, N = I = 3

Illustrates that the network's routing capacity can be greater than 1. We obtain $\epsilon = 3/2$

For each message \mathbf{m} , a directed subgraph of G is an <u>m-tree</u> if it has exactly one directed path from the source emitting \mathbf{m} to each destination node which demands \mathbf{m} , and the subgraph is minimal with respect to this property (similar to directed Steiner trees).

Let T_1, T_2, \ldots be all such **m**-trees of a network. e.g., this network has two **x**-trees and two **y**-trees:





Define the following index sets:

 $A(\mathbf{m}) = \{i : T_i \text{ is an } \mathbf{m}\text{-tree}\}$ $B(e) = \{i : T_i \text{ contains edge } e\}.$

Denote the total number of trees T_i by t.

For a given network, we call the following 4 conditions the *network inequalities*:

$$\sum_{i \in A(\mathbf{m})} d_i \ge 1 \qquad (\forall \mathbf{m} \in M)$$
$$\sum_{i \in B(e)} d_i \le \rho \qquad (\forall e \in E)$$
$$0 \le d_i \le 1$$
$$0 \le \rho \le t$$

where d_1, \ldots, d_t, ρ are real variables. If a solution (d_1, \ldots, d_t, ρ) to the network inequalities has all rational components, then it is said to be a <u>rational solution</u>. $(kd_i \text{ represents the number of message components carried by <math>T_i$.) Lemma: If a non-degenerate network has a minimal fractional routing solution with achievable routing rate r > 0, then the network inequalities have a rational solution with $\rho = 1/r$.

Lemma: If the network inequalities corresponding to a non-degenerate network have a rational solution with $\rho > 0$, then there exists a fractional routing solution with achievable routing rate $1/\rho$.

By formulating a linear programming problem, we obtain:

Theorem: The routing capacity of every non-degenerate network is achievable.

Theorem: The routing capacity of every network is rational.

Theorem: There exists an algorithm for determining the network routing capacity.

Theorem: For each rational r > 0 there exists a solvable network whose routing capacity is r.

Network Coding Capacity

• The *coding capacity* is

 $\sup \{k/n \in \mathbb{Q} : \exists (k, n) \text{ fractional coding solution} \}.$

- routing capacity \leq linear coding capacity \leq coding capacity
- Routing capacity is independent of alphabet size. Linear coding capacity is not independent of alphabet size.
- **Theorem**: The coding capacity of a network is independent of the alphabet used.

The End.

Insufficiency of Linear Network Codes

Randy Dougherty

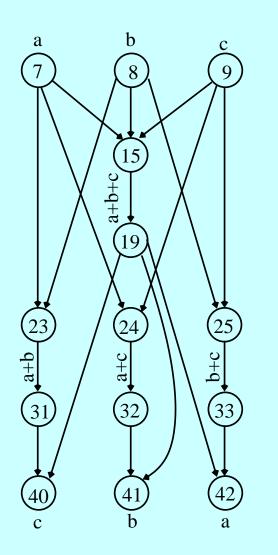
(Center for Communications Research, La Jolla)

Chris Freiling

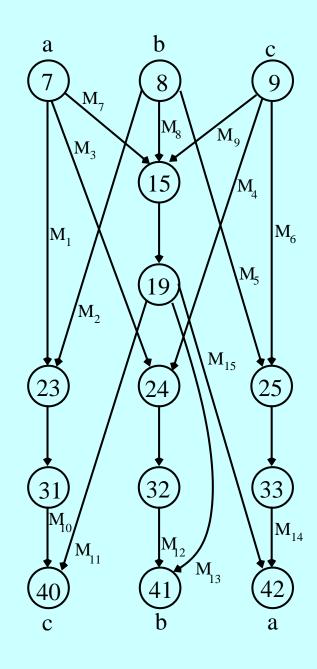
(California State University, San Bernardino)

Ken Zeger

(University of California, San Diego)

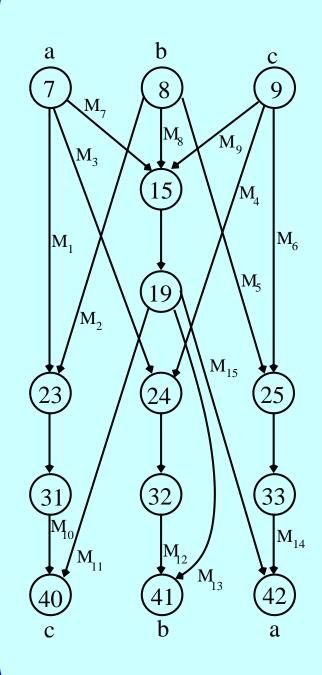


A linearly solvable network.



 $e_{23,31} = M_1 a + M_2 b$ $e_{24,32} = M_3 a + M_4 c$ $e_{25,33} = M_5 b + M_6 c$ $e_{15,19} = M_7 a + M_8 b + M_9 c$

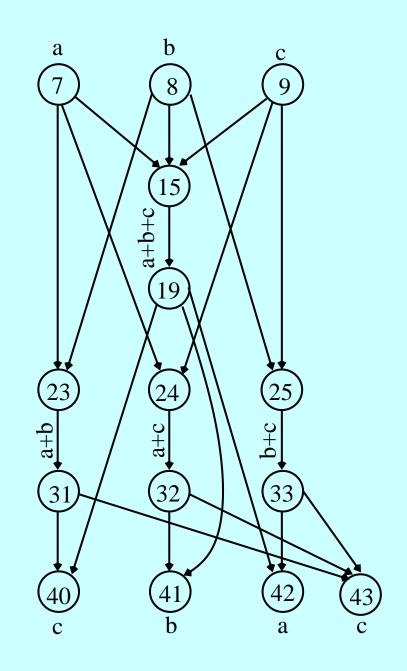
 $c = M_{10}(M_1a + M_2b) + M_{11}(M_7a + M_8b + M_9c)$ $b = M_{12}(M_3a + M_4c) + M_{13}(M_7a + M_8b + M_9c)$ $a = M_{14}(M_5b + M_6c) + M_{15}(M_7a + M_8b + M_9c)$



Equating coefficients of a, b, c in the previous equations gives

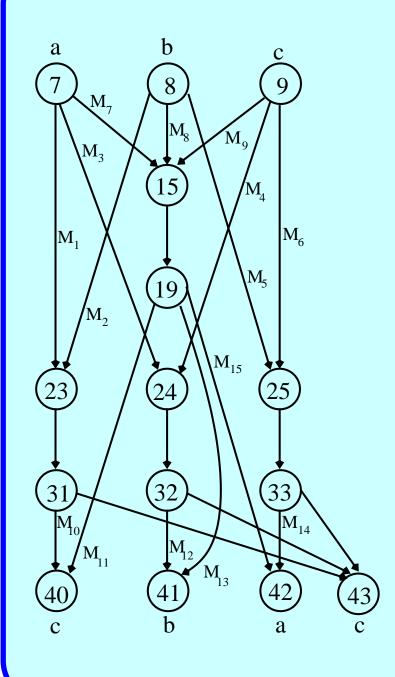
Ι	=	$M_{11}M_9 = M_{13}M_8 = M_{15}M_7$
$M_{10}M_1$	=	$-M_{11}M_{7}$
$M_{10}M_{2}$	=	$-M_{11}M_8$
$M_{12}M_{3}$	=	$-M_{13}M_{7}$
$M_{12}M_{4}$	=	$-M_{13}M_{9}$
$M_{14}M_5$	=	$-M_{15}M_{8}$
$M_{14}M_{6}$	=	$-M_{15}M_{9}$

 $M_{10}(M_1a + M_2b) + M_{11}(M_7a + M_8b) = 0$ $M_{12}(M_3a + M_4c) + M_{13}(M_7a + M_9c) = 0$ $M_{14}(M_5b + M_6c) + M_{15}(M_8b + M_9c) = 0$



A network linearly solvable over odd-characteristic fields.

$$c = ((a + c) + (b + c) - (a + b)) \cdot 2^{-1}$$

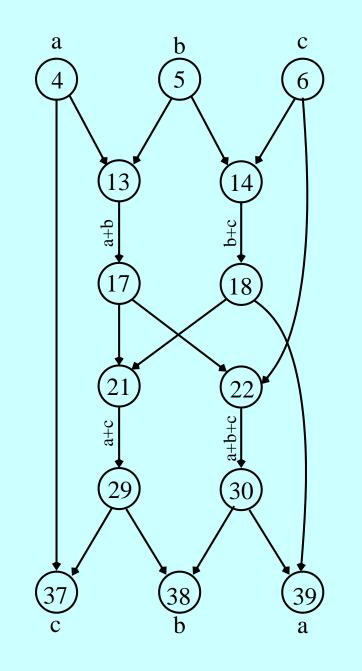


 $M_7a \longrightarrow a$ $M_8b \longrightarrow b$ $M_9c \longrightarrow c$ $M_7a + M_8b \longrightarrow M_1a + M_2b$ $M_7a + M_9c \longrightarrow M_3a + M_4c$ $M_8b + M_9c \longrightarrow M_5b + M_6c$

6

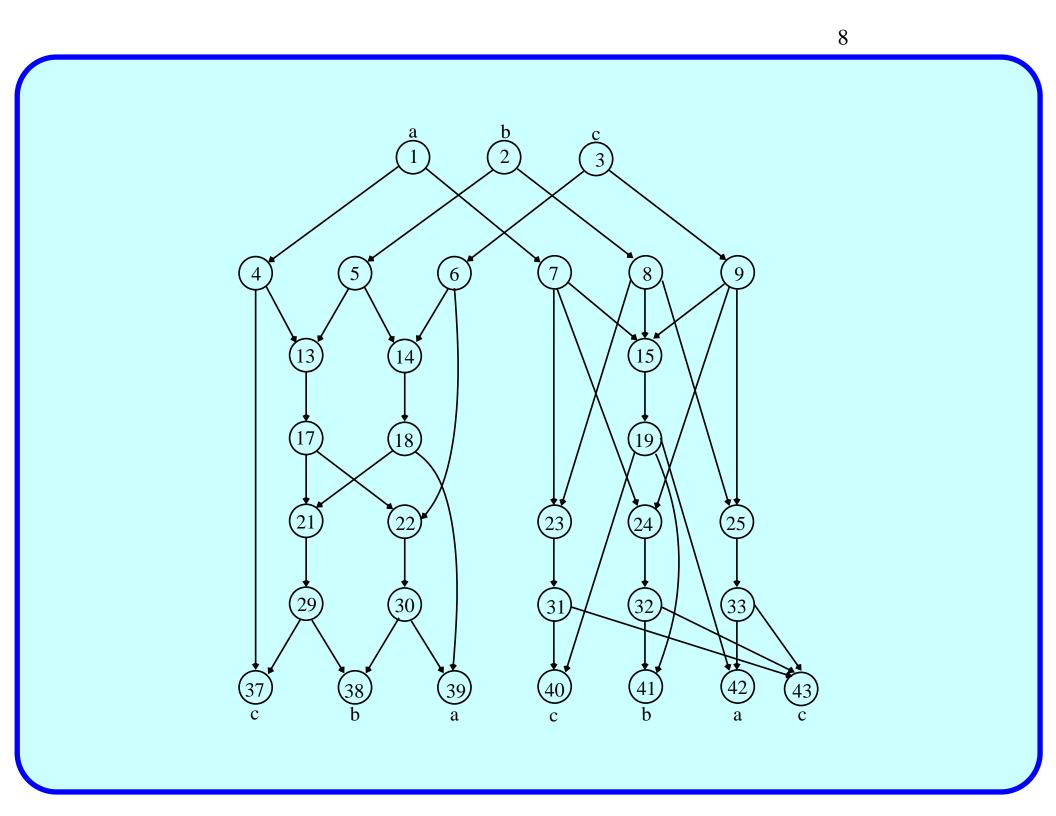
In characteristic 2:

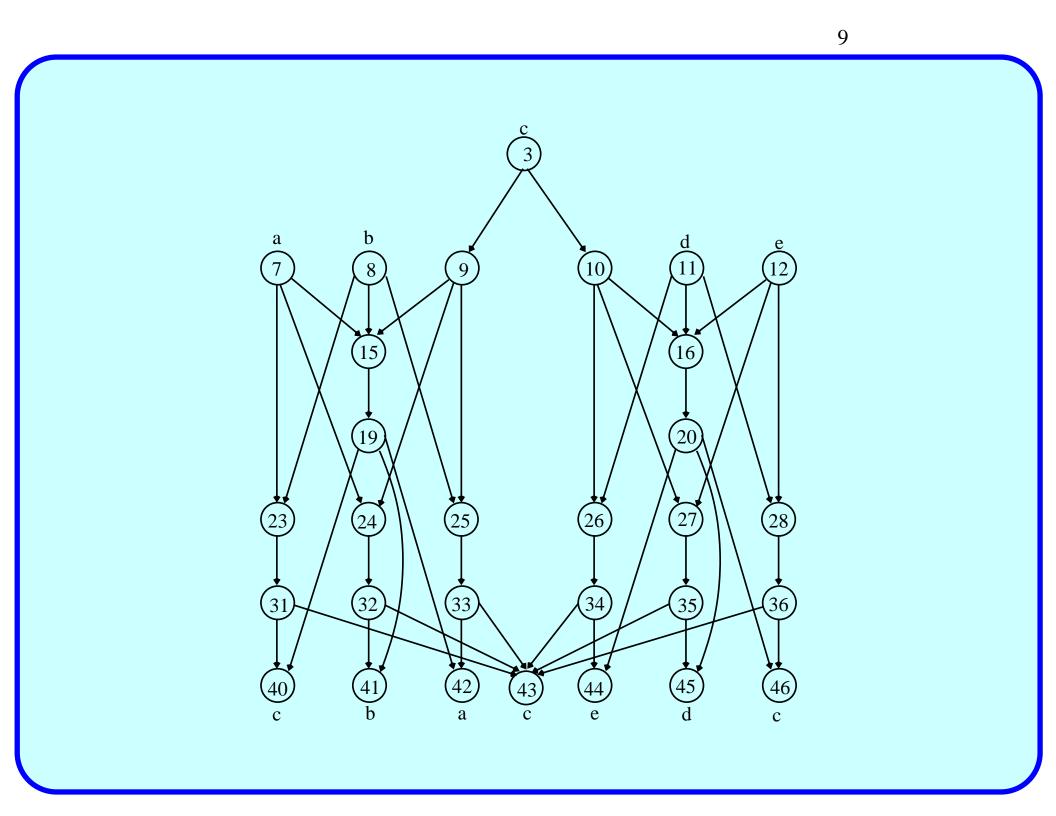
 $M_7 a + M_8 b,$ $M_7 a + M_9 c \longrightarrow a, b, c$

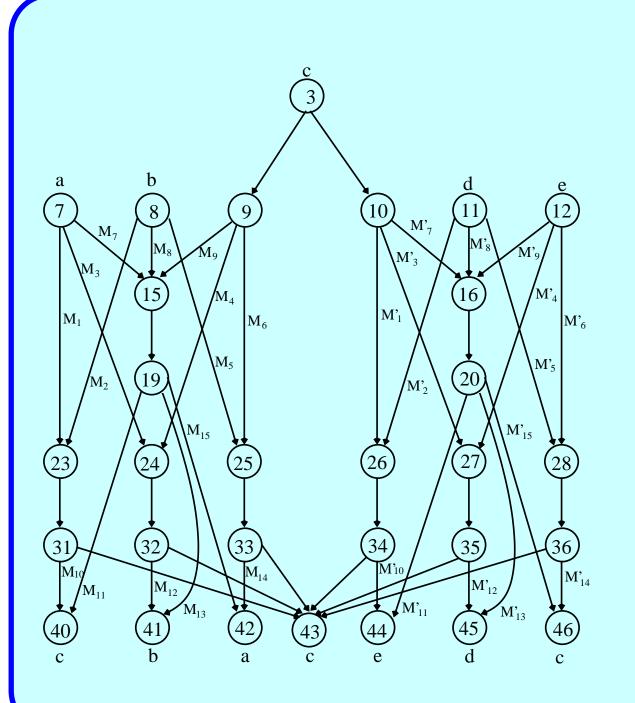


A network linearly solvable over fields of characteristic 2.

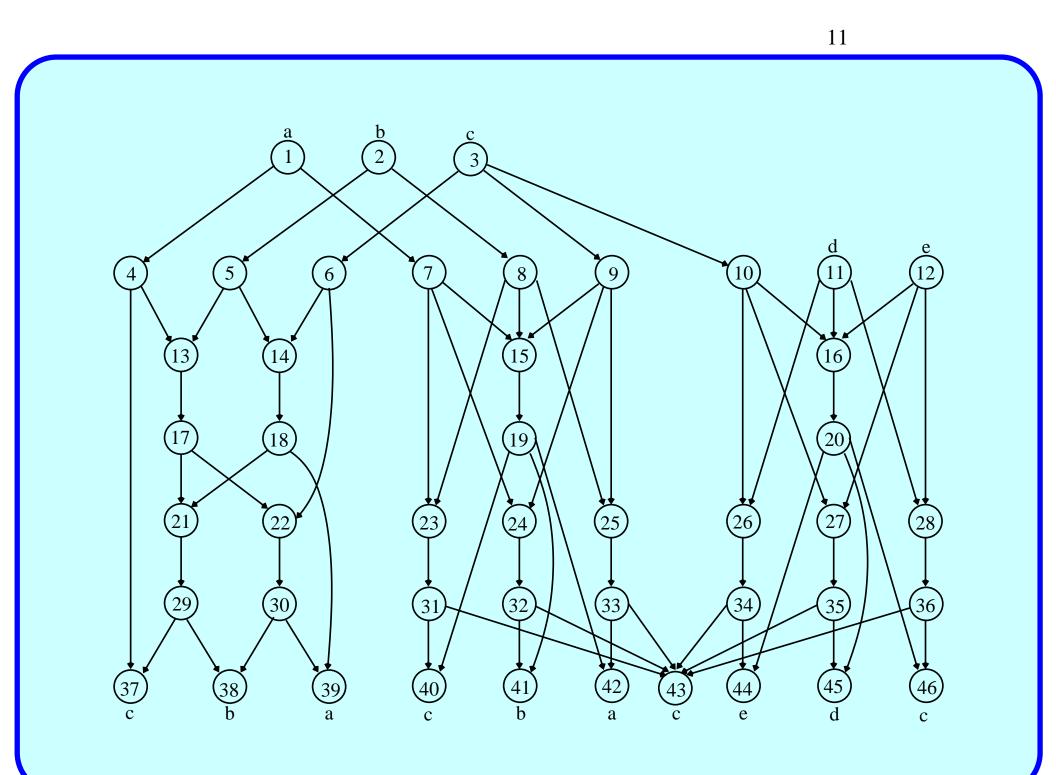
$$(a+c) = (a+b) + (b+c)$$

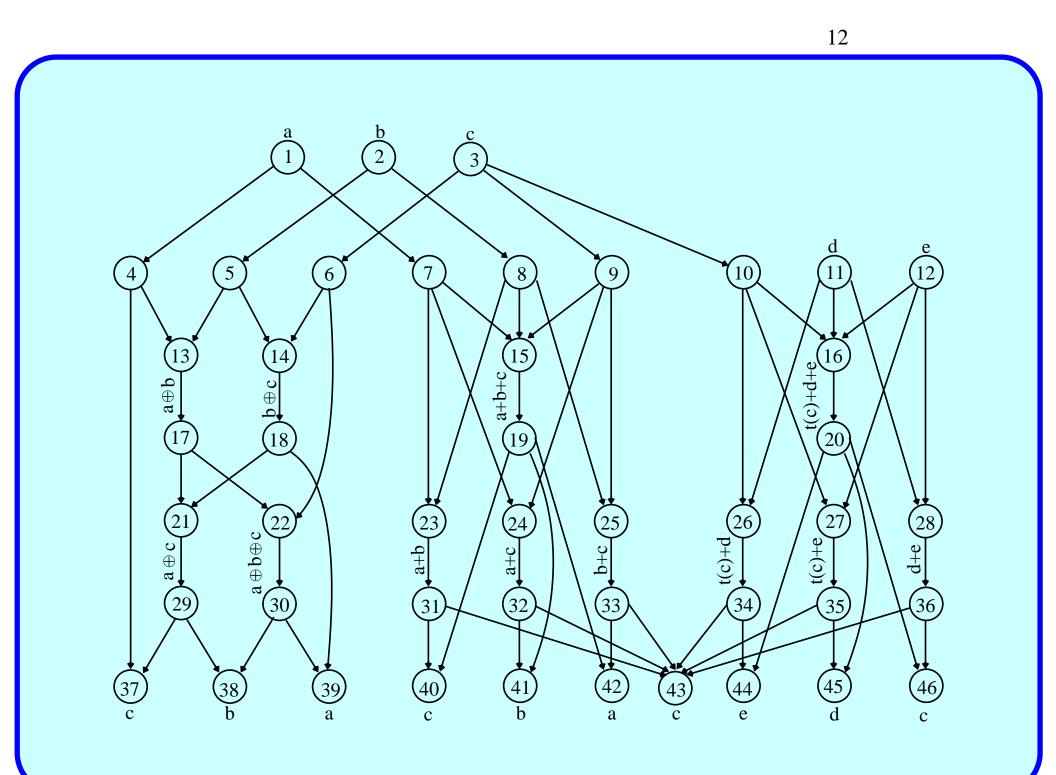






In characteristic 2: $M_7a + M_8b$, $M_7a + M_9c$, $M'_7c + M'_8d$, $M'_7c + M'_9e$, $\longrightarrow a, b, c, d, e$





Definitions

- A (k, n) <u>fractional linear solution</u> over F uses linear edge functions and decoding functions, where each source message is a vector of k elements of F and each edge carries a vector of n elements of F.
- The <u>linear capacity</u> of a network over F is the supremum of k/n over all pairs (k, n) for which there exists a (k, n) fractional linear solution over F.
- A network is *asymptotically linearly solvable* if its linear capacity is at least 1.

As shown before,

 $I = M_{11}M_9 = M_{13}M_8 = M_{15}M_7$ $M_{10}M_1 = -M_{11}M_7$ $M_{10}M_2 = -M_{11}M_8$ $M_{12}M_3 = -M_{13}M_7$ $M_{12}M_4 = -M_{13}M_9$ $M_{14}M_5 = -M_{15}M_8$ $M_{14}M_6 = -M_{15}M_9.$

Notice that:

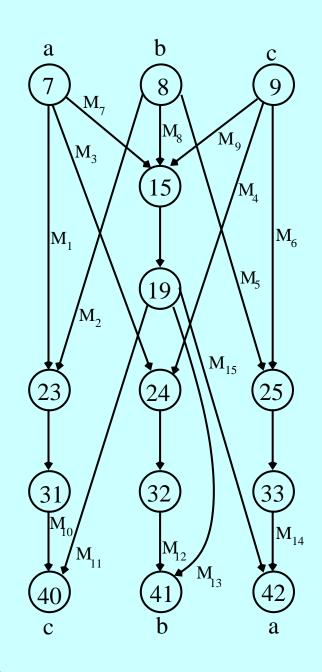
 M_1, \ldots, M_9 are $n \times k$ M_{10}, \ldots, M_{15} are $k \times n$ $M_7, M_8, M_9, M_{11}, M_{13}, M_{15}$ have rank k M_{10}, M_{12}, M_{14} have rank at least k - (n - k). If a $k \times n$ matrix M has rank at least r, then there is an $(n - r) \times n$ matrix Q such that

$$\mathsf{rank}\left(\left[\begin{array}{c}M\\Q\end{array}\right]\right)=n$$

and hence

$$Mx, Qx \longrightarrow x.$$

For M_{10} , M_{12} , M_{14} , the corresponding matrices Q_{10} , Q_{12} , Q_{14} are $2(n-k) \times n$.



From

$$M_{10}(M_1a + M_2b) = -M_{11}(M_7a + M_8b)$$

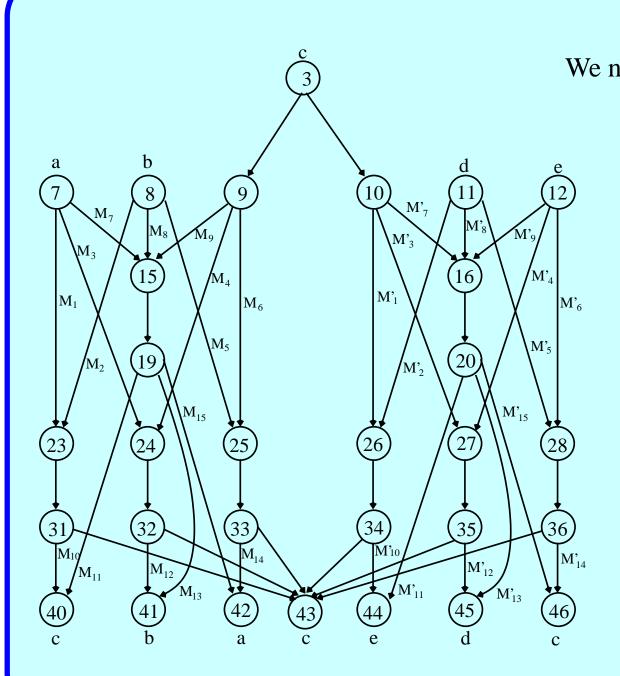
we get

 $M_7a + M_8b, \ Q_{10}(M_1a + M_2b) \longrightarrow M_1a + M_2b.$ Similarly,

 $M_7a + M_9c, \ Q_{12}(M_3a + M_4c) \longrightarrow M_3a + M_4c$ $M_8b + M_9c, \ Q_{14}(M_5b + M_6c) \longrightarrow M_5b + M_6c.$

And we still have

 $M_7a \longrightarrow a, M_8b \longrightarrow b M_9c \longrightarrow c.$



We now get in characteristic 2: $M_7a + M_8b$, $M_7 a + M_9 c$, $Q_{10}(M_1a + M_2b),$ $Q_{12}(M_3a + M_4c),$ $Q_{14}(M_5b + M_6c),$ $M_7'c + M_8'd,$ $M_7'c + M_9'e$, $Q'_{10}(M'_1c + M'_2d),$ $Q'_{12}(M'_3c + M'_4e),$ $Q'_{14}(M'_5d + M'_6e)$ $\longrightarrow a, b, c, d, e.$

From the previous page, in characteristic 2 we have:

> $M_7a + M_8b$, $M_7 a + M_9 c$, $Q_{10}(M_1a + M_2b),$ $Q_{12}(M_3a + M_4c),$ $Q_{14}(M_5b + M_6c),$ $M_7'c + M_8'd,$ $M_7'c + M_9'e$, $Q'_{10}(M'_1c + M'_2d),$ $Q'_{12}(M'_3c + M'_4e),$ $Q'_{14}(M'_5d + M'_6e)$ $\longrightarrow a, b, c, d, e.$

There are 5k independent components on the right, so there must be at least 5k components on the left. So,

$$4n + 6(2(n-k)) \ge 5k$$
$$16n \ge 17k$$
$$16/17 \ge k/n$$

With substantial additional work, one can show that the complete example network has:

- linear capacity 4/5 over odd-characteristic fields, and
- linear capacity 10/11 over even-characteristic fields.

So the network is solvable, but not asymptotically linearly solvable.

Our results

Explicit counterexample network giving:

- Non-linear solution over 4-symbol alphabet.
- No vector linear solution for any dimension or any finite field.
- No *R*-linear solution over any *R*-module
 (.: no linear solutions over Abelian groups or arbitrary rings for any dimension).
- Coding capacity is 1.
- Linear coding capacity over finite fields is 4/5 or 10/11 depending on parity of alphabet size.
- Linear codes are asymptotically insufficient over finite fields.
- Not solvable by means of convolutional coding or filter-bank coding.

Detailed results found in:

- R. Dougherty, C. Freiling, and K. Zeger
 "Linearity and Solvability in Multicast Networks" *IEEE Transactions on Information Theory* vol. 50, no. 10, pp. 2243-2256, October 2004.
- R. Dougherty, C. Freiling, and K. Zeger

"Insufficiency of Linear Coding in Network Information Flow" *IEEE Transactions on Information Theory* (submitted February 27, 2004, revised January 6, 2005).

 J. Cannons, R. Dougherty, C. Freiling, and K. Zeger "Network Routing Capacity" *IEEE/ACM Transactions on Networking* (submitted October 16, 2004).

Manuscripts on-line at: code.ucsd.edu/zeger

The End.