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Definitions

� An alphabet is a finite set.

� A network is a finite d.a.g. with source messages from a fixed alphabet and

message demands at sink nodes.

� A network is degenerate if some source message cannot reach some sink

demanding it.
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Definitions - scalar coding

� Each edge in a network carries an alphabet symbol.

� An edge function maps in-edge symbols to an out-edge symbol.

� A decoding function maps in-edge symbols at a sink to a message.

� A solution for a given alphabet is an assignment of edge functions and decoding

functions such that all sink demands are satisfied.

� A network is solvable if it has a solution for some alphabet.

� A solution is a routing solution if the output of every edge function equals a

particular one of its inputs.

� A solution is a linear solution if the output of every edge function is a linear

combination of its inputs (typically, finite-field alphabets are assumed).
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Definitions - vector coding

� Each edge in a network carries a vector of alphabet symbols.

� An edge function maps in-edge vectors to an out-edge vector.

� A decoding function maps in-edge vectors at a sink to a message.

� A network is vector solvable if it has a solution for some alphabet and some vector

dimension.

� A solution is a vector routing solution if every edge function’s output components

are copied from (fixed) input components.

� A vector linear solution has edge functions which are linear combinations of

vectors carried on in-edges to a node, where the coefficients are matrices.

� A vector routing solution is reducible if it has at least one component of an edge

function which, when removed, still yields a vector routing solution.
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Definitions - � � ��� � fractional coding

� Messages are vectors of dimension � .

Each edge in a network carries a vector of at most � alphabet symbols.

� A � � 	 � 
 fractional linear solution has edge functions which are linear

combinations of vectors carried on in-edges to a node, where the coefficients are

rectangular matrices.

� A � � 	 � 
 fractional solution is a fractional routing solution if every edge function’s

output components are copied from (fixed) input components.

� A � � 	 � 
 fractional routing solution is minimal if it is not reducible and if no

� � 	 ��� 
 fractional routing solution exists for any � �  � .
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Definitions - capacity

� The ratio � � � in a � � 	 � 
 fractional routing solution is called an

achievable routing rate of the network.

� The routing capacity of a network is the quantity

� � �� � � all achievable routing rates �	�

� Note that if a network has a routing solution, then the routing capacity of the

network is at least 
 .
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Some prior work

� Some solvable networks do not have routing solutions (AhCaLiYe 2000).

� Every solvable multicast network has a scalar linear solution over some sufficiently large

finite field alphabet (LiYeCa 2003).

� If a network has a vector routing solution, then it does not necessarily have a scalar linear

solution (MéEfHoKa 2003).

� For multicast networks, solvability over a particular alphabet does not imply scalar linear

solvability over the same alphabet (RaLe, MéEfHoKa, Ri 2003, DoFrZe 2004).

� For non-multicast networks, solvability does not imply vector linear solvability

(DoFrZe 2004).

� For some networks, the size of the alphabet needed for a solution can be significantly

reduced using fractional coding (RaLe 2004).
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Our results

� Routing capacity definition.

� Routing capacity of example networks.

� Routing capacity is always achievable.

� Routing capacity is always rational.

� Every positive rational number is the routing capacity of some solvable network.

� An algorithm for determining the routing capacity.
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Some facts

� Solvable networks may or may not have routing solutions.

� Every non-degenerate network has a � � 	 � 
 fractional routing solution for some �

and � (e.g. take � � 
 and � equal to the number of messages in the network).
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Example of routing capacity

1

4

5

2 3

6 7

x, y

x, y x, y

This network has a linear coding solution but no

routing solution.

Each of the � � message components must be

carried on at least two of the edges � � ��� 	 � � ��� , � � ��	 .

Hence, � � � � 
 
 � � , and so � 
 � �� .

Now, we will exhibit a � � 	� 
 fractional routing

solution...
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Example of routing capacity continued...
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Let � � � and � � � .

This is a fractional routing solution.

Thus, � �� is an achievable routing rate, so � � � �� .

Therefore, the routing capacity is � � � �� .
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Example of routing capacity

21

3

4

65
x, yx, y x, yx, y

x y

The only way to get � to � � is � � � � � � � � � � � .

The only way to get � to � 	 is � � � � � � � � � � 	 .

� � � � must have enough capacity for both messages.

Hence, � � 
 � , so � 
 
 � � .
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Example of routing capacity continued...

21

3

4

65
x, yx, y x, yx, y

x y

x
yx

x y

y

y x

Let � � 
 and � � � .

This is a fractional routing solution.

Thus, 
 � � is an achievable routing rate, so � � 
 � � .

Therefore, the routing capacity is � � 
 � � .
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Example of routing capacity

21

3 54

96 7 8

, ba

, db, cb, da, ca

, dc

This network is due to R. Koetter.

Each source must emit at least � � components and the

total capacity of each source’s two out-edges is � � .

Thus, � � 
 � � , yielding � 
 
 .
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Example of routing capacity continued...
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d1
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c1
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Let � � � and � � � .

This is a fractional routing solution

(as given in MéEfHoKa, 2003).

Thus, � � � is an achievable routing rate, so � � 
 .

Therefore, the routing capacity is � � 
 .
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Example of routing capacity

(1),x x m(   )... ,

N+2
(1),x x m(   )... ,

N+1N32

1

(1),x x m(   )

II

...

...

...

...

... ,
I
N

+1+N

Each node in the 3rd layer receives a unique set of � edges from the 2nd layer.

Every subset of � nodes in layer 2 must receive all � � message components from the

source. Thus, each of the � � message components must appear at least � � � � � 
 


times on the � out-edges of the source. Since the total number of symbols on the �

source out-edges is � � , we must have � � � � � � � � 
 
 
 
 � � or equivalently

� � � 
 � � � � � � � � � 
 
 
 . Hence, � 
 � � � � � � � � � 
 
 
 .
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Example of routing capacity continued...

(1),x x m(   )... ,

N+2
(1),x x m(   )... ,

N+1N32

1

(1),x x m(   )

II

...

...

...

...

... ,
I
N

+1+N

Let � � � and � � � � � � � � 
 


There is a fractional routing solution with these parameters
(the proof is somewhat involved and will be skipped here).

Therefore, � � � � � � � � � 
 
 
 is an achievable routing rate, so

� � � � � � � � � � � 
 
 
 .

Therefore, the routing capacity is � � � � � � � � � � � 
 
 
 .
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(1),x x m(   )... ,

N+2
(1),x x m(   )... ,

N+1N32

1

(1),x x m(   )

II

...

...

...

...

... ,
I
N

+1+N

Some special cases of the network:

� � � � ��� � �� , 	 � 
 (AhRi 2004)

No binary scalar linear solution exist. It has a non-linear binary scalar solution using a � � � �� � � �

Nordstrom-Robinson error correcting code. We compute that the routing capacity is  � � � � � � .

� � � � ��� � � , 	 � � (RaLe 2003)

The network is solvable, if the alphabet size is at least equal to the square root of the number of sinks.

We compute that the routing capacity is  � � � �� � ��� � � � .

� � � � ,� � 	 � �

Illustrates that the network’s routing capacity can be greater than 1. We obtain  � � � � .
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21

3

4

65
x, yx, y x, yx, y

x y For each message � , a directed subgraph of � is an

� -tree if it has exactly one directed path from the

source emitting � to each destination node which

demands � , and the subgraph is minimal with re-

spect to this property (similar to directed Steiner trees).

Let � � 	 � � 	� � � be all such � -trees of a network.

e.g., this network has two � -trees and two � -trees:

3

4

65
x, yx, y x, yx, y

1

x

3

4

65
x, yx, y x, yx, y

1

x

3

4

65
x, yx, y x, yx, y

2

y

3

4

65
x, yx, y x, yx, y

2

y



21

Define the following index sets:

� � � 
 � ��� � � � is an � -tree �

� � � 
 � ��� � � � contains edge � �	�

Denote the total number of trees � � by � .
For a given network, we call the following 4 conditions the network inequalities:

� �� 	�
 �
 � � 
 ��� � � � 


� �� 	�� �
 � 
 � �� � �� 


� 
  � 
 


� 
 � 
 �

where � 	� � � 	 � 	 � are real variables. If a solution � � 	� � � 	 � 	 � 
 to the network

inequalities has all rational components, then it is said to be a rational solution.

( �  � represents the number of message components carried by � � .)
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Lemma: If a non-degenerate network has a minimal fractional routing solution with

achievable routing rate � � � , then the network inequalities have a rational solution

with � � 
 � � .

Lemma: If the network inequalities corresponding to a non-degenerate network have a

rational solution with � � � , then there exists a fractional routing solution with

achievable routing rate 
 � � .

By formulating a linear programming problem, we obtain:

Theorem: The routing capacity of every non-degenerate network is achievable.

Theorem: The routing capacity of every network is rational.

Theorem: There exists an algorithm for determining the network routing capacity.

Theorem: For each rational � � � there exists a solvable network whose routing

capacity is � .
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Network Coding Capacity

� The coding capacity is

� � � � � � � � � �� � � 	 � 
 fractional coding solution � �

� routing capacity 
 linear coding capacity 
 coding capacity

� Routing capacity is independent of alphabet size.

Linear coding capacity is not independent of alphabet size.

� Theorem: The coding capacity of a network is independent of the alphabet used.
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The End.
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c ab
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A linearly solvable network.
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M1
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M8 M9
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M14

c ab

8

19

23 24 25

31 32

40 42

7 9

15

33

41

ba c

� � � ��� � � � ��� � � � �

� � � ��� � � � � � � � ���

� � 	 ��� � � � 	 � � � ���

� � 	 � � � � � � � � � � � � � �	�

� � � � 
 � � �� � � � � 
 � � � � � � � � � � � � � � �� 


� � � � � � � � � � � ��� 
 � � � � � � � � � � � � � � �� 


� � � � � � � 	 � � � � � 
 � � � 	 � � � � � � � � � � ��� 
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M14

c ab

8

19

23 24 25

31 32

40 42

7 9

15

33

41

ba c Equating coefficients of� 	 � 	� in the

previous equations gives

� � � � � � � � � � � � � � � � 	 � �

� � 
 � � � � � � � � �

� � 
 � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � 	 � � � � 	 � �

� � � � � � � � � 	 � �

� � 
 � � �� � � � � 
 � � � � � � � � � � � � 
 � �

� � � � � � � � � ��� 
 � � � � � � � � � � �� 
 � �

� � � � � 	 � � � �� 
 � � � 	 � � � � � � �� 
 � �
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c cab

8

19

23 24 25

31 32

40 42 43

7 9

15

33

41

ba

a+
b+

c
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b
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c

b+
c

c

A network linearly solvable over

odd-characteristic fields.

� � � �� � � 
 � � � � � 
 � �� � � 
 
�� � � �
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� � � � � �

� � � � � �

� ��� � � �

� � � � � � � � � � �� � � � �

� � � � � ��� � � � � � � � ���

� � � � � ��� � � � 	 � � � ���

In characteristic 2:

� � � � � � � 	

� � � � � ��� � � � 	 � 	�
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b ac

4
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22
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37 38 39

5 6

14
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a b c
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b
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c
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c

a+
c

A network linearly solvable over

fields of characteristic 2.

�� � � 
 � �� � � 
 � � � � � 
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In characteristic 2:

� � � � � � � 	

� � � � � �� 	

� �
�� � � �
� 	

� �
�� � � �
� � 	

� � � 	 � 	� 	 	 �
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c

d e

a b c

b ca decac b

1 2 3

4 8 11
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14 15 16

18

21 27 28

30 33 34 36

4541
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14 15 16
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30 33 34 36
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b
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c

d+
e
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+
e

t(
c)

+
d

t(
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+
d+
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Definitions

� A � � 	 � 
 fractional linear solution over � uses linear edge functions and decoding

functions, where each source message is a vector of � elements of � and each

edge carries a vector of � elements of � .

� The linear capacity of a network over � is the supremum of � � � over all pairs

� � 	 � 
 for which there exists a � � 	 � 
 fractional linear solution over � .

� A network is asymptotically linearly solvable if its linear capacity is at least 1.
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As shown before,

� � � � � � � � � � � � � � � � 	 � �

� � 
 � � � � � � � � �

� � 
 � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � 	 � � � � 	 � �

� � � � � � � � � 	 � ��
Notice that:

� � 	� � � 	 � � are � � �

� � 
 	� � � 	 � � 	 are � � �

� � 	 � � 	 � � 	 � � � 	 � � � 	 � � 	 have rank �

� � 
 	 � � � 	 � � � have rank at least � � � � � � 
�



15

If a � � � matrix � has rank at least � , then there is an � � � � 
 � � matrix � such that

� �� � �
�

�
�

�
�

� �

and hence

� 	 	 � 	 � � 	 �
For � � 
 , � � � , � � � , the corresponding matrices � � 
 , � � � , � � � are � � � � � 
 � � .
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M1
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8
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23 24 25

31 32

40 42

7 9

15

33
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ba c

From

� � 
 � � ��� � � � � 
 � � � � � � � � � � � � � 


we get

� � � � � � � 	 � � 
 � � �� � � � � 
 � � � � � � � � ��

Similarly,
� � � � � � � 	 � � � � � � � � � � � 
 � � � � � � � � �

� � � � � � � 	 � � � � � 	 � � � � � 
 � � � 	 � � � ��� �

And we still have

� � � � � � 	 � � � � � � � �� � � � �
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c
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M1
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M3

M4

M5

M6

M7
M8 M9

M10

M11
M12

M13

M14

M15

12M’
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7M’
8M’

9M’
3M’

4M’

1M’
6M’

5M’

2M’

15M’
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19 20

23 24 25 26

31 32 35

40 42 43 44 46

7 9 10 12

15 16

27 28

33 34 36

4541

ba

We now get in characteristic � :

� � � � � � � 	

� � � � � �� 	

� � 
 � � � � � � � � 
 	

� � � � � � � � � � � 
 	

� � � � � 	 � � � �� 
 	

� �
�� � � �
� 	

� �
�� � � �
� � 	

�
�

� 
 � � �
�� � � �
�  
 	

�
�

� � � � �
� � � � �
� � 
 	

�
�

� � � � �
	  � � �
� � 


� � � 	 � 	� 	 	 ��
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From the previous page,

in characteristic � we have:
� � � � � � � 	

� � � � � �� 	

� � 
 � � ��� � � � � 
 	

� � � � � � � � � � � 
 	

� � � � � 	 � � � �� 
 	

� �
�� � � �
� 	

� �
�� � � �
� � 	

�
�

� 
 � � �
�� � � �
�  
 	

�
�

� � � � �
� � � � �
� � 
 	

�
�

� � � � �
	  � � �
� � 


� � � 	 � 	� 	 	 ��
There are � � independent components on the

right, so there must be at least � � components

on the left. So,

� � � � � � � � � � 
 
 � � �


 � � � 
 � �


 � � 
 � � � � � �
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With substantial additional work, one can show that the complete example network has:

� linear capacity� � � over odd-characteristic fields, and

� linear capacity 
 � � 
 
 over even-characteristic fields.

So the network is solvable, but not asymptotically linearly solvable.
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Our results

Explicit counterexample network giving:

� Non-linear solution over� -symbol alphabet.

� No vector linear solution for any dimension or any finite field.

� No � -linear solution over any � -module

( � no linear solutions over Abelian groups or arbitrary rings for any dimension).

� Coding capacity is 
 .

� Linear coding capacity over finite fields is� � � or 
 � � 
 
 depending on parity of

alphabet size.

� Linear codes are asymptotically insufficient over finite fields.

� Not solvable by means of convolutional coding or filter-bank coding.
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The End.


