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“There is as yet no unified theory of network information

flow. But there can be no doubt that a complete theory

of communication networks would have wide implications

for the theory of communication and computation.”

- Cover & Thomas, Elements of Information Theory.
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History of Network Coding

• Breakthrough [Ahlswede et al. ’00].

◦ Existence of multicast solution depends on min-cut con-

dition.

• Algebraic framework [Koetter & Médard ’03].

◦ Led to a randomized, distributed, fault-tolerant algorithm

for multicast [Ho et al. ’03].

• Deterministic algorithms for multicast [Jaggi et al. ’03,

Harvey et al. ’05].
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The Network Coding Problem

Sink Sink

a b
c

d
e f

Source Source Given:

• Directed acyclic graph G.

• Integral capacity c(u, v) for

each edge (u, v).

• k-commodities:

◦ Set of source nodes.

◦ Set of sink nodes.
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The Idea of Network Coding

x ⊕ y yx

Sink
wants

Sink
wants

a b
c

d
e f

Source 

y x

Source

yx

has bit yhas bit x
• There is one message for each

commodity.

◦ Every source knows the

message.

◦ Every sink wants the mes-

sage.

◦ A message is a single sym-

bol from an alphabet Σ.

• Each edge of capacity c can

transmit c symbols from Σ.

• Question: Does there exist

a solution?
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This Talk: from Existence to Optimization

• Consider size of alphabet Σ.

◦ Model of network coding that works for multicast doesn’t

work well in general.

◦ Need a notion of “rate”.

• What is the maximum achievable communication rate in a

network?

◦ Explore bounds based on cut conditions.

◦ Develop entropy inequalities based on graph structure.

• What is the maximum rate in an undirected network?
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Alphabet Size
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Who Cares About Alphabet Size?

• Small alphabet means simple, efficiently-computable edge

functions.

• Large alphabet implies large latency.

• Need Ω(log |Σ|) bits of memory at each node to compute

edge functions (naively).

• An upper bound on |Σ| would imply that the network coding

problem is decidable.
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Our Results - The Bad News

• Sometimes an enormous alphabet is required!

◦ An n-node network may require an alphabet of size:

|Σ| = 2eΩ(n1/3)

◦ Solution may exist but be hopelessly unwieldy!

• Nonmonotonicity:

◦ Instance solvable with 4-symbol alphabet, but not with

1000-symbol alphabet!

◦ Can’t fix a single large alphabet size, e.g. 264.
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Building Block: Network Ik

wants
all M‘s & P‘s 

wants
all M‘s

wants
all M‘s

wants all M‘s
-Mi + Pj

wants all P‘s
-Pj + Mi

has messages M1, ..., Mk, P1, ..., Pk
capacity 2k-2
capacity k-1 
capacity 2

Lemma 1 Solvable iff |Σ| = qk.
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Doubly-Exponential Lower Bound

• Network Ik has O(k2) nodes and requires |Σ| to be a perfect

k-th power.

• Let Jn consist of disjoint networks

I2 I3 I5 I7 I11 . . . Ip

where p is largest prime less than n1/3.

⇒ Jn has O(n) nodes and there is a solution if and only if:

|Σ| = C2 · 3 · 5 · 7 · 11 · · · p = CeΩ(n1/3)

≥ 2eΩ(n1/3)
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Our Results - The Good News

If each edge can send one additional bit,

then the minimum alphabet size is O(1).

• Our bad example is an artifact of using the network at 100.0%

capacity.

• Are we wasting our time with this model?

• Tweak the model?

◦ Messages are drawn from an alphabet Γ.

◦ Each edge transmits one symbol from larger alphabet Σ.

◦ Rate = log |Γ|
log |Σ|.
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What is the Maximum Achievable Rate?
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What is the Maximum Achievable Rate?

• Open problem except for multicast where max rate = min-

cut between the source and any sink.

• Is there a cut-based upper bound on rate for the general

problem?

• Do information theoretic tools give a better upper bound?
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Sparsity

• Sparsity of a cut A ⊆ E is:

capacity of edges in cut A

# commodities with no remaining source-sink path

• Sparsity of a graph is minimum sparsity over all cuts.

• There exist directed graphs in which the maximum
rate > sparsity.

Sparsity = 1/2
Rate = 1
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Meagerness

• A set of commodities P is separated by a cut if there is no
remaining path from a source of any commodity in P to a
sink of any commodity in P .

• The meagerness of a graph is the minimum over all sets of
commodities P and cuts that separate P of

capacity of edges in cut

|P |
• The maximum rate ≤ meagerness in directed graphs.

Meagerness = 1
Rate = 1
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Sometimes Max Rate < Meagerness

The meagerness is 1.

This flow solution has rate 2/3. Best possible?
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Sometimes Max Rate < Meagerness

• The meagerness is 1.

This flow solution has rate 2/3. Best possible?
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Sometimes Max Rate < Meagerness

3
2

3
1

3
2

3
1

3
2

3
2

Γ= {0,1}2
Σ = {0,1}3

Γ= {0,1}2
Σ = {0,1}3

• The meagerness is 1.

• This flow solution has rate 2/3. Best possible?
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Better Bounds Through Entropy

• Obtain strictly better bounds on rate through entropy argu-

ments.

◦ Show max rate 2/3 for previous example.

◦ Implies meagerness is a loose upper bound on rate.

• Entropy of a random variable X is the information in X mea-

sured in bits.

◦ The entropy of X is denoted H(X).

◦ The entropy of X and Y together is H(X, Y ).
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Entropy View of Network Coding

F G

Sa
Sc

Sb

TaTcTb

• Suppose messages are selected

independently and uniformly

from Γ.

• As a result, the symbol trans-

mitted on each edge is a R.V.

• Structure of graph and prop-

erties of entropy imply con-

straints that a network code

must satisfy.
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Entropy and Network Coding

• Properties of entropy:

◦ Nonnegative: H(U) ≥ 0.

◦ Nondecreasing: H(U, x) ≥ H(U).

◦ Submodular: H(U) + H(V ) ≥ H(U ∪ V ) + H(U ∩ V ).

• Constraints on a network coding solution:

◦ Uniformity of sources: H(SA) = log |Γ|.

◦ Independence of sources: H(SA, SB) = H(SA) + H(SB).

◦ sources = sinks: H(SA, U) = H(TA, U) for all U .

◦ Edge capacity: H(e) ≤ log |Σ|.
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One More Condition: Downstreamness

F G

Sa
Sc

Sb

TaTcTb

U is downstream of V if all paths

from a source to an edge in U

intersect V .

If U is downstream of V ,

H(V ) = H(U, V ).

Ex 1: Tb is downstream of {Sa, F}.
H(Sa, F ) = H(Sa, Tb, F ).

Example 2: Ta is downstream of

{Sb, G}. H(Sb, G) = H(Ta, Sb, G).

Example 3: Tc is downstream of

{F, G}. H(F, G) = H(Tc, F, G).
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One More Condition: Downstreamness

F G

Sa
Sc

Sb

TaTcTb

U is downstream of V if all paths

from a source to an edge in U

intersects V .

If U is downstream of V ,

H(V ) = H(U, V ).

Ex 1: Tb is downstream of {Sa, F}.
H(Sa, F ) = H(Sa, Tb, F ).

Ex 2: Ta is downstream of {Sb, G}.
H(Sb, G) = H(Ta, Sb, G).

Example 3: Tc is downstream of

{F, G}. H(F, G) = H(Tc, F, G).
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One More Condition: Downstreamness

F G

Sa
Sc

Sb

TaTcTb

U is downstream of V if all paths

from a source to an edge in U

intersects V .

If U is downstream of V ,

H(V ) = H(U, V ).

Ex 1: Tb is downstream of {Sa, F}.
H(Sa, F ) = H(Sa, Tb, F ).

Ex 2: Ta is downstream of {Sb, G}.
H(Sb, G) = H(Ta, Sb, G).

Ex 3: Tc is downstream of {F, G}.
H(F, G) = H(Tc, F, G).
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Proof: Max Rate = 2/3
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= ++

H(Sa, F) H(Sb, G) H(Sa, Tb, F) H(Ta, Sb, G)+ = +

27



= ++
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= ++

sources = sinks
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= ++

+>

submodularity
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= ++

+>

downstreamness
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= ++

+>

sources = sinks
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= ++

+>

= 5 log |Γ|
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Max Rate = 2/3

+ > 5 log |Γ|
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Max Rate = 2/3

+ > 5 log |Γ|+
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Max Rate = 2/3

+ > 5 log |Γ|+ +
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Max Rate = 2/3

+ > 5 log |Γ|+ +log |Γ|log |Γ|
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Max Rate = 2/3

+ > 3 log |Γ|
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Max Rate = 2/3

+ > 3 log |Γ|>2 log |Σ|
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What is the Maximum Rate?

• Simple cut-based characterizations of max rate unsatisfac-

tory.

◦ Sparsity is wrong for directed graphs.

◦ Meagerness is a loose upper bound.

• Do the entropy conditions give a tight upper bound on rate?

◦ Unknown in general.

◦ Many inequalities and many ways to combine; get giant

LP.

40



Further Results: Coding in Undirected Graphs

• How do we even model this?

◦ Rule out cyclic dependencies between edge functions.

◦ Edge capacity bounds information flow in two directions.

• Entropy conditions carry over, e.g. downstreamness.

• Sparsity is a loose upper bound on rate.

Conjecture: In an undirected graph, the maximum multicom-

modity flow = the maximum network coding rate.

• We prove for an infinite class of “interesting” graphs.
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Okamura-Seymour Example

s(a)

s(b)

s(c)

s(d)

t(c)

t(a)

t(b)

t(d)

• 4 commodities.

• Each edge has capacity 1.

• Sparsity 1.

• Maximum multicommodity flow

3/4.

• Maximum rate with network

coding is also 3/4!
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Okamura-Seymour Example

Ta

Sb

Sa

Sc

Sd

Tc

Tb

Td

• Add new sources and sinks

and the corresponding edges.

• Each source transmits one

symbol from Γ.

• Each edge transmits one sym-

bol from Σ.

• Want to show log |Γ|
log |Σ| ≤ 3/4.

• Use three different edge-cuts.
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Okamura-Seymour Example - Cut #1

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sb, U) = H(Ta, Sb, U)

H(Sb) + H(U) H(Sa, Sb, Sc, Sd)

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #1

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

H(Sb) + H(U) H(Sa, Sb, Sc, Sd)

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #1

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

H(Sb) + H(U) = H(Sa, Sb, Sc, Sd)

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #1

Sa

Sc

Sd

Tc

Tb

Td

Sb

Ta

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

H(Sb) + H(U) = H(Sa, Sb, Sc, Sd)

≥ 9 log |Γ|

47



Okamura-Seymour Example - Cut #1

Sa

Sc

Sd

Tc

Tb

Td

Sb

Ta

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

= H(Sa, Sb, Sc, Sd)

H(Sb) + H(U) ≥ 4 log |Γ|
H(U) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #1

Sa

Sc

Sd

Tc

Tb

Td

Sb

Ta

+ +

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

= H(Sa, Sb, Sc, Sd)

H(Sb) + H(U) ≥ 4 log |Γ|
H(U) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #1

Sa

Sc

Sd

Tc

Tb

Td

Sb

Ta

H(Sb, U) = H(Ta, Sb, U)

= H(Sa, Sb, U)

= H(Sa, Sb, Tc, Td, U)

= H(Sa, Sb, Sc, Sd)

H(Sb) + H(U) ≥ 4 log |Γ|
H(U) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #2

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sa, V ) = H(Sa, Tc, Td, V )

H(Sa, Tb, Sc, Sd, V )

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #2

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sa, V ) = H(Sa, Tc, Td, V )

= H(Sa, Tb, Sc, Sd, V )

H(Sa, Tb, Sc, Sd, V )

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #2

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sa, V ) = H(Sa, Tc, Td, V )

= H(Sa, Tb, Sc, Sd, V )

= H(Sa, Sb, Sc, Sd)

H(V ) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #2

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

+ +

H(Sa, V ) = H(Sa, Tc, Td, V )

= H(Sa, Tb, Sc, Sd, V )

= H(Sa, Sb, Sc, Sd)

H(V ) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #2

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sa, V ) = H(Sa, Tc, Td, V )

= H(Sa, Tb, Sc, Sd, V )

= H(Sa, Sb, Sc, Sd)

H(V ) ≥ 3 log |Γ|

≥ 9 log |Γ|
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Okamura-Seymour Example - Cut #3

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td
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Okamura-Seymour Example - Cut #3

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sc, Sd, W ) = H(Tb, Sc, Sd, W )

= H(Ta, Sb, Sc, Sd, W )

= H(Sa, Sb, Sc, Sd)

H(W ) ≥ 2 log |Γ|

≥ 6 log |Γ|
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Okamura-Seymour Example - Cut #3

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

+ +

H(Sc, Sd, W ) = H(Tb, Sc, Sd, W )

= H(Ta, Sb, Sc, Sd, W )

= H(Sa, Sb, Sc, Sd)

H(W ) ≥ 2 log |Γ|

≥ 6 log |Γ|
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Okamura-Seymour Example - Cut #3

Sb

Ta

Sa

Sc

Sd

Tc

Tb

Td

H(Sc, Sd, W ) = H(Tb, Sc, Sd, W )

= H(Ta, Sb, Sc, Sd, W )

= H(Sa, Sb, Sc, Sd)

H(W ) ≥ 2 log |Γ|

≥ 6 log |Γ|
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Putting It Together

= + +3

3(6 log |Σ|) ≥ 9 log |Γ|+ 9 log |Γ|+ 6 log |Γ|
18 log |Σ| ≥ 24 log |Γ|

3

4
≥

log |Γ|
log |Σ|
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Network Coding vs. Multicommodity Flow

• Only comparable when each commodity has a single source

and single sink.

• For this example, shown:

max flow rate = max network coding rate

• Open: Is this true for all undirected graphs?
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Additional Results

• Can prove the conjecture for all instances defined on bipartite

graphs such that

◦ Length 1 for all edges is dual optimal.

◦ Distance between each source and sink is 2.

• Operational downstreamness: A set of edges U is opera-

tionally downstream of a set V if for all network coding solu-

tions there exists a function mapping the symbols transmitted

on edges in V to edges in U .

◦ In undirected graphs, we have a graph theoretic condition

that characertizes operational downstreamness.

◦ In directed graphs, the graph theoretic condition implies

operational downstreamness.
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Summary

• Capacity of information networks is poorly understood.

• Model for multicast is not appropriate for more general prob-

lems.

• Introduce a notion of rate.

• What is the maximum rate?

◦ Directed graphs: meagerness is a loose upper bound.

◦ Undirected graphs: sparsity is a loose upper bound.

• Introduced entropy relationships based on graph structure.

◦ Do these exactly characterize the rate?
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Related Work

• By Monday, details will be available at:

http:\\theory.csail.mit.edu/~arasala/thesis.pdf

• Song, Yeung and Cai ’03

◦ For directed acyclic graphs, used similar entropy con-

straints to characterize an outer-bound on the feasible

rate region.

• Jain et al. ’05

◦ Developed similar entropy constraints for the general prob-

lem.

◦ Independently derived same results for undirected graphs.

64



Can you solve this?
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s(1) s(2)

s(3)

s(4)

s(5)s(6)

s(7)

s(8)

t(6) t(7)

t(8)

t(1)

t(2)t(3)

t(4)

t(5)

s(9)
t(10)

s(10)
t(9)

Length 1 is dual optimal
max flow = 8/15

Sparsity = 5/8


