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Online incremental network coding for multiple

unicasts

• We have an approach adding a unicast connection over existing

connections in a network

• This is useful as part of an online algorithm that considers

connections one at a time, and decides whether and how to add

each

• We can extend the approach of Awerbuch et al. [AAP93] on

throughput-competitive online routing to network coding
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Problem statement

• sequentially consider connection requests βj , j = 1, 2, . . . , k,

each specifying source sj , destination dj , duration, bandwidth

and an associated reward

• goal is to maximize total reward (e.g. throughput)

• online algorithm either allocates sufficient capacity to

accommodate request or rejects request; no rerouting of

connections

• Evaluate online algorithm by competitive ratio: supremum, over

all possible input sequences, of the ratio of the optimal offline

reward to the online reward

3



Notation and assumptions

• m links in network

• reward ρj of jth request bounded within range [1, R]

• consider single period and unit bandwidth requests for

simplicity

• capacity ue of each link e bounded within range [log µ, P ],

where P ≥ 1 and µ = 2mPR
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Online routing approach of Awerbuch et al.

• Online strategy:

– assign link costs exponential in fractional usage

– accept a connection only if “worthwhile” compared to costs

• Competitive ratio of O(log n) achieved, where n is the number

of nodes
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Incorporating network coding

• allow up to two connections to share capacity by being coded

together

• associate with each edge e a cost, after considering j − 1

requests, based on fraction λe,x(j) of its capacity already

assigned to x = 1, 2 or more flows:

ce(j) =
1

m
µλe,1(j)+αλe,2(j)(1− 1

ue
−λe,1(j))

+

where α < 1
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Online strategy

• algorithm accommodates request βj iff it can find a solution

such that

∑

e

(ae,1 + αae,2) ce(j)

ue

≤ ρj

ae,2

ue

≤ λe,1(j) − λe,2(j) ∀ e &

ae,1 + αae,2

ue

≤
1

log µ
∀ e

where ae,x is the capacity of e used in adding βj that becomes

shared by x = 1, 2 connections
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Finding a low-cost solution for a connection

• by linear programming based on the equations described

earlier, or

• by combinatorial methods, e.g.

– greedy approach similar to Dijkstra’s algorithm, but

involving two shortest path computations to determine cost

of sharing a link

– admits merging of remedy paths

– larger solution space than the linear programming

approach, but may not obtain optimal cost
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Performance

• A (2 log µ + 3) competitive ratio is obtained as long as each

connection added uses a solution costing no more than the

lowest cost routing-only solution

• Any online algorithm has a throughput competitive ratio of

Ω(log(mR))

– proof uses a line network with requests of exponentially

decreasing resource requirements/exponentially increasing

rewards [AAP93]
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Enforcing capacity constraints

• When λe,1(j) > 1 − 1
ue

, using the assumption that

log µ ≤ ue ≤ P , we have

ce(j)

ue

>
µ1− 1

log µ

mue

≥
µ

2mP
= R,

so capacity will not be exceeded
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Lower bounding online performance

• If request βj is admitted,

∑

e

(ce(j + 1) − ce(j)) ≤
∑

e

ce(j)

(

µ
ae,1+αae,2

ue − 1

)

≤
∑

e

ce(j)

(

ae,1 + αae,2

ue

)

log µ

≤ ρj log µ

• Summing over set A of all accepted requests,

∑

j∈A

ρj log µ ≥
∑

e

(

ce(k + 1) −
1

m

)

=
∑

e

ce(k + 1) − 1,

where k is the total number of requests.
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Upper bounding off-line performance

• If request j is admitted by the off-line algorithm but not the

online algorithm,

ρj <
∑

e∈P ′

j

ce(j)

ue

≤
∑

e∈P ′

j

ce(k + 1)

ue

where P ′

j is the path from sj to tj that forms part of the set of

links used by the off-line algorithm to accommodate βj

• Total reward from the set Q of these requests is at most

∑

j∈Q

∑

e∈P ′

j

ce(k + 1)

ue

=
∑

e: e∈P ′

j
, j∈Q

ce(k + 1)
∑

j∈Q: e∈P ′

j

1

ue

≤ 2
∑

e

ce(k + 1)
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Competitive ratio

• Off-line reward is at most
∑

j∈Q

ρj +
∑

j∈A

ρj ≤ 2
∑

e

ce(k + 1) +
∑

j∈A

ρj

≤ 2 + (2 log µ + 1)
∑

j∈A

ρj

• Competitive ratio is 2 log µ + 3
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Conclusions and further work

• Online algorithm for sequentially phasing in multiple unicast

connections

• Performance guaranteed to be within 2 log µ + 3 factor of

optimal off-line solution

• Further work:

– comparison of online network coding algorithm with online

routing on typical or random graphs

– randomized online network coding algorithms

– online algorithms for networks with concurrent multicast

and unicast connections
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