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Online incremental network coding for multiple
unicasts

e We have an approach adding a unicast connection over existing

connections in a network

e This is useful as part of an online algorithm that considers
connections one at a time, and decides whether and how to add
each

e We can extend the approach of Awerbuch et al. [AAP93] on
throughput-competitive online routing to network coding



Problem statement

sequentially consider connection requests 85,7 =1,2,...,k,

each specifying source s;, destination d;, duration, bandwidth

and an associated reward
goal is to maximize total reward (e.g. throughput)

online algorithm either allocates sufficient capacity to
accommodate request or rejects request; no rerouting of

connections

Evaluate online algorithm by competitive ratio: supremum, over
all possible input sequences, of the ratio of the optimal offline

reward to the online reward




Notation and assumptions

m links in network
reward p; of j** request bounded within range [1, R]

consider single period and unit bandwidth requests for

simplicity

capacity u. of each link e bounded within range [log u, P],
where P > 1 and u =2mPR



Online routing approach of Awerbuch et al.

e Online strategy:
— assign link costs exponential in fractional usage
— accept a connection only if “worthwhile” compared to costs

e Competitive ratio of O(logn) achieved, where n is the number

of nodes



Incorporating network coding

e allow up to two connections to share capacity by being coded

together

e associate with each edge e a cost, after considering 7 — 1
requests, based on fraction A, . (j) of its capacity already
assigned to x = 1, 2 or more flows:
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Online strategy

e algorithm accommodates request 3; iff it can find a solution
such that
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where a. , is the capacity of e used in adding 3; that becomes
shared by z = 1,2 connections



Finding a low-cost solution for a connection

e by linear programming based on the equations described
earlier, or
e by combinatorial methods, e.g.

— greedy approach similar to Dijkstra’s algorithm, but
involving two shortest path computations to determine cost

of sharing a link
— admits merging of remedy paths

— larger solution space than the linear programming

approach, but may not obtain optimal cost



Performance

e A (2logu + 3) competitive ratio is obtained as long as each
connection added uses a solution costing no more than the

lowest cost routing-only solution

e Any online algorithm has a throughput competitive ratio of
Q(log(mR))
— proof uses a line network with requests of exponentially

decreasing resource requirements/exponentially increasing

rewards [AAP93]



Enforcing capacity constraints

e When A.1(j) > 1 — -, using the assumption that
log u < ue. < P, we have
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so capacity will not be exceeded
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Lower bounding online performance

o If request (3; is admitted,
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e Summing over set A of all accepted requests,
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where k is the total number of requests.
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Upper bounding off-line performance

If request j is admitted by the off-line algorithm but not the

online algorithm,
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where P]( is the path from s; to ¢; that forms part of the set of

links used by the off-line algorithm to accommodate 3;
Total reward from the set Q of these requests is at most
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Competitive ratio

e Off-line reward is at most
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e Competitive ratio is 2log 1 + 3
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Conclusions and further work

e Online algorithm for sequentially phasing in multiple unicast

connections

e Performance guaranteed to be within 2log i + 3 factor of
optimal off-line solution
e Further work:

— comparison of online network coding algorithm with online

routing on typical or random graphs
— randomized online network coding algorithms

— online algorithms for networks with concurrent multicast

and unicast connections
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