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In the past few years, pattern discovery has been emerging as a
generic tool of choice for tackling problems from the computational
biology domain. In this presentation, and after defining the problem
in its generality, we review some of the algorithms that have
appeared in the literature and describe several applications of
pattern discovery to problems from computational biology. © 2000

Academic Press

1. INTRODUCTION

Recent years have witnessed an emergence of pattern dis-
covery methodologies for solving numerous tasks which
arise in computational biology. Known also as “data min-
ing” approaches, they represent a novel approach for
extracting useful information from databases containing
various types of biological information.

Initially, dynamic programming techniques were applied
to the analysis of biological sequences and to the determina-
tion of sequence similarity between a query sequence and
one or more biological sequences (DNA, proteins, and
fragments) from a collection. Subsequent studies of such
sequence similarity revealed conserved functional and struc-
tural signals, thus making the argument for the usefulness of
such approaches. Research effort spanning almost two
decades gave rise to a number of useful algorithms and an
abundance of interesting scientific results [ 2, 58, 63, 77].

Almost in parallel, researchers began looking into other
approaches in an effort to develop concise consensus
sequences that captured and represented regions of
similarity across several sequences presumed to be related.
A large number of early methods relied on multiple string
alignment [ 19, 25, 44, 70] as the method of choice for dis-
covering these regions [22, 54, 58, 60, 80, 89, 91]. The
related sequences could be transformed to one another
through permissible edit operations (e.g., mutations, inser-
tions, deletions) each of which had an associated cost.
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Alignment-based methods had the drawback of imposing
an alignment of all the sequences in the processed input;
additionally, they worked best only if the involved
parameters were optimized for the set being considered [4].

Pattern discovery techniques were introduced to alleviate
the problems associated with multiple sequence alignment
and algorithms have been steadily appearing in the biblio-
graphy [ 46, 59, 65, 66, 71, 78, 79, 83, 86 ]. Essentially, these
algorithms seek to determine one or more patterns that
represented one or more blocks of related sequences. In
some cases, these algorithms are used to compute the car-
dinality and the boundaries of conserved blocks within
groups of related sequences [ 41, 42, 507, build profiles [ 16,
361, build HMMs [ 48, 81], or generate regular expressions
that characterized and described sequence regions of inter-
est [5, 8, 32]. Additional applications included the use of
pattern discovery techniques to solve other NP-hard
problems [ 34 ] such as multiple sequence alignment [ 56, 61,
62, 75], the determination of tandem repeats in DNA
stretches [ 82], etc.

More recently, discovery techniques began being applied
to other problems from computational biology that
departed from the traditional sequence analysis work. These
problems include text mining, structure characterization
and prediction, promoter signal detection, gene expression
analysis, and others [ 9, 10, 17, 40, 45, 67, 74].

In this paper, we present a moderately detailed discussion
of related work that appeared in recent years as well as
describe some of the algorithms and applications in whose
development we have been involved. Clearly, we cannot
provide a comprehensive coverage of all related work in this
field; consequently, and whenever possible, we will refer the
reader to review articles.

2. THE GENERAL PROBLEM

What we are typically presented with is a database D
composed of one or more records. The records can have the
same or different arbitrary lengths and can be thought of
as streams of possible “events” chosen from a set E of
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permissible events. Examples event sets E include but are
not limited to the following: letters from a fixed alphabet
(e.g., the 26 letters of the English language, 4 nucleotides, 20
amino acids), words from an allowed vocabulary (e.g.,
words from a natural language), categorical values from a
finite collection (e.g., {red, green, blue, white, black} or
{pop, jazz, R&B, hip-hop} ), integer numbers from a set of
bounded cardinality (e.g., {0,1,2,3,4,5,6,7,8,9}), real
numbers from a finite interval (e.g. [ —5, +7]), etc.

Frequently, there also exists an evaluation function F
whose domain is the set E x E and range the set R of real
numbers. F can be thought of as a function that quantifies
the quality of similarity between any two events from the set
E. This function can be a distance metric in the strict sense?
but several functions have also appeared in the literature
that do not satisfy the commutative law. Obviously, the
exact form of the function F is dependent on the problem
domain and the set of permissible events [ 21, 35, 43, 76].

Given the database D, the event set £, and the evaluation
function F, the task at hand is to determine interesting com-
binations of events which are contained in D. However,
neither is the subset of events participating in the interesting
combinations known nor the exact form of these combina-
tions. Ideally, the task is to be carried out in the absence of
domain-specific knowledge and this makes the notion of
interesting poorly defined.

One way to address these problems is to recast the notion
of interesting in terms of the number of times some com-
bination of events appears. Thus, a combination of events
will be considered interesting if and only if it appears a mini-
mum number of times in the processed input database. This
is called the “threshold” or minimum “support.”

Even with this definition in place, determining interesting
combinations in the input is not a straightforward task.
Additional needed elements include the definition of the
nature of allowed patterns and their minimum allowed
density.

The nature of the allowed patterns is defined with the help
of regular expressions whose complexity has traditionally
been used as a key differentiator among the various algo-
rithms that appeared in the literature. Typically, and unless
the nature of sought patterns is extremely simple, detecting
all patterns that exist in an input of length N is an NP-hard
problem.®> Examples of regular expressions that reflect the
types of patterns that are captured by previously proposed
algorithms include E %, i.e., one or more consecutive events;
E(EU{.})*E, ie., two or more events separated by an

2 For F to be a distance metric, it must satisfy the following four condi-
tions: Fle,e)=0; Fle,,e,)=0; Fle,e,)=F(eye;); and F(e;,e;)<
Fley, e;) + Fle,, €3).

3 A reduction form the longest common subsequence problem [ 53] can be
used to prove NP-hardness.
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arbitrary number of events or wild-card characters;
E([EE*E]u{.} VE)* EUE, ie., a single event or two or
more events separated by any combination involving a
single event, a wild-card, or a choice among two or more
possible events. The character “.” in these expressions is the
wild-card or don’t care character and is used to denote a
position occupied by an event that remains unspecified; for
example, K..[ILMV]..H is used to denote an instance of
event K followed by any three permissible events followed
by any one of I, L, M, or V followed by any two permissible
events and terminating in H.

As for the minimum allowed density, this is typically
defined as a minimum allowed value for the ratio of the
positions that are occupied by non-wild cards over the
actual span of an instance of the pattern. The concept of
density can be either implicit to the algorithm or explicit in
which case it can be deduced from the values of the
parameters passed to the algorithm. In earlier work [65,
661, we introduced the concept of the (L, W) pattern and
this is the definition that we will also use in this discussion.
A pattern P will be called an { L, W) pattern (with L < W)
if and only if any L consecutive literals (i.e., non-wild cards)
span at most W positions.

A final requirement for defining the set of possible solu-
tions is that of the minimum required support: an allowed
combination of events, i.e., a pattern P will not be contained
in the set of reported solutions unless there exist at least K
instances of it in the database D.

To recapitulate, we can define the problem of discovering
“interesting combinations” of events as follows: given a
database D comprising one or more variable-length streams
of events from an event set E, an evaluation function
F: ExE— R defined on the event set, and parameters
{L, W, K}, find all {L, W) patterns that have at least K
instances in D.

The algorithms that have appeared in the literature and
have attempted to tackle this problem fall into one of two
broad categories. The first category includes algorithms
which operate by enumerating the solution space; i.e., they
hypothesize each possible pattern in turn (for example in
order of increasing span) and verify whether its support
exceeds the predefined user threshold. Clearly, the difficulty
in enumerating the patterns—solutions increases with the
number of positions that the pattern spans; consequently,
some discovery algorithms impose restrictions on the maxi-
mum length that the discovered patterns can have.

The algorithms in the second category begin with the
observation that if the input D contains patterns whose
instances span many positions and satisfy the support
threshold K, then fragments of these longer patterns must
also appear K or more times in D. Thus, the algorithms in
this category begin by collecting all these seed patterns, a
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relatively straightforward task, and concentrate on building
the final patterns—solutions out of their component seed
patterns. Several of the more efficient algorithms follow this
approach.

Independent of how the patterns—solutions contained in
D are obtained, all algorithms should ideally report all
{ L, W patterns that have at least K instances in D. In [ 65,
66 ] we introduced an additional property that reported pat-
terns may have the “maximality” with respect to length and
composition. A pattern P that is maximal and is reported as
occurring K’ times in the database D cannot be made more
specific either by prepending/appending an event combina-
tion to it or by dereferencing any of the wild cards it con-
tains without simultaneously decreasing its support.
Another way of describing this maximality property is that
any reported pattern P that is claimed to occur K’ times in
D is as long and as dense as it can be without violating the
density constraint that the parameters L and W dictate.

In an effort to control the size of generated output, some
of the proposed methods introduce heuristics; others restrict
the type of allowed patterns. Finally, a third group employs
a measure of information content or importance curbing the
reporting to only those of the patterns that exceed a
threshold [46, 59, 71, 86]. In all these cases, the perfor-
mance improves at the expense of reporting an incomplete
set of the results.

3. SOME OF THE ALGORITHMIC APPROACHES

We next highlight some representative algorithms among
those that have appeared over the past few years. The list is
by no means exhaustive and for a discussion from a
theoretical standpoint the interested reader should refer to
[ 15]. It should also be noted that any of the algorithms that
will be mentioned below can be modified, at least in prin-
ciple, with moderate effort to address problems outside the
immediate computational biology context for which they
were developed; we will thus be using the term “event” to
refer interchangeably to any of the terms “character,”
“alphabet symbol,” “amino acid,” and “nucleotide.”

One characteristic of the earlier algorithms was their
reliance on first determining a multiple sequence alignment
for the input streams and subsequently constructing a con-
sensus sequence from it. Those of the consensus sequence
fragments whose support exceeded threshold were reported
as the discovered patterns. The natural mapping of the
biological operations of mutation, insertion, and deletion to
string editing operations made the use of multiple sequence
alignment the subtask of choice.

Probably the earliest instance of a pattern discovery
recipe is the one appearing in [80] as part of a multiple
sequence method: the recipe called for the determination of
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all substrings exceeding a minimum length and appearing in
all of the input streams. To achieve discrimination power,
the minimum length had to be substantial at the expense of
missing shorter common substrings.

In [79], all pairings of input streams are formed and
scored. Each pair of similar input streams is then replaced
by a pattern that captures the alignment of the pair’s
members in preparation for the next iteration. All successive
iterations of the procedure are carried out on pairs of
generated patterns until only one pattern (or none) remains.
Upon termination, a binary dendrogram can be built with
each internal node corresponding to a pattern present in all
of the input sequences at the leaves of the subtree rooted at
this node.

At about the same time, the work in [ 78 ] introduced the
MOTIF algorithm for carrying out pattern discovery.
MOTIF operates by exhaustively enumerating all L-tuples
(L =3) of amino acids that appear in the input set and the
distance between the first and last amino acid of the triplet
was bounded from above (W =21). Those of the L-tuples
with instances exceeding threshold are used as anchor
regions to induce local alignments and further expand the
patterns. A variation of this method can be found in [ 83].

The method described in [ 69 ] begins by selecting a basic
stream which is then compared with all other streams in the
input and any similar segments that appear in at least K
streams are determined. Obviously, the quality of the results
is dependent on the choice of the basic stream.

MOTIF is also the starting point for the ASSET method
discussed in [59]. In addition to allowing positions in the
L-tuples to be occupied by at most two possible events
(“ambiguously” defined positions), the method permits the
discovery of rigid patterns that are of arbitrary length. The
number of positions that can be occupied by “double
characters” should be kept to a minimum to avoid perfor-
mance degradation, whereas a double filtering (minimum
required support and statistical importance) stage furthers
speeds things up.

This last approach is combined in [46 ] with a depth-first
search strategy leading to an even more powerful algorithm.
The resulting method, PRATT, allows not only for
ambiguous positions with more than two possible events
but also for flexible gaps. A user-defined, minimum required
support as well as parameters controlling the maximum pat-
tern length, the maximum number of components, the max-
imum number of ambiguous components, and the nature of
allowed ambiguous components are used to prune the
search tree.

A similar algorithm is described in [ 71] that also allows
for ambiguous positions but permits only rigid gaps. When
the cardinality of the event set E is large (e.g., |E| =20), one
needs to specify the groups of events that can occupy an
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ambiguous position in advance together with a limit on the
number of a group’s instances in any pattern. To avoid
generating redundant results, and when two patterns match
the same stream of events, the more specific pattern is the
one that is explored further.

DISCOVER is different than the above in that it
hypothesizes potential patterns and then verifies them [ 86,
87]. The algorithm seeks patterns that are the concatena-
tion of several components each of which is a string over the
event set E; two successive strings can potentially appear at
variable distances from one another. The algorithm employs
a generalized suffix tree, each internal node of which keeps
track of how many of the input sequences contain the string
that labels the path from the root of the tree to the node.
After determining which of the strings have support that
exceeds a predetermined support threshold, the algorithm
hypothesizes patterns comprising m string components and
verifies which of those combinations satisfy the minimum
support requirement. To improve performance, the algo-
rithm makes use of the support that a pattern under con-
sideration obtains from a random fraction of the input
database and probabilistically decides whether its support
by the entire database will exceed the predetermined
threshold. Note that valid patterns may be discarded during
this step; if a pattern makes it through this step, its support
will be recomputed for the entire input database and if it is
above threshold then the pattern will be reported. The per-
formance of the approach is acceptable if the starting collec-
tion of candidate components is small and the examined
patterns do not comprise too many of such components. It
is also possible that the final list includes redundant, over-
lapping, and nonmaximal patterns.

More recently, EMOTIF [ 60] was proposed as an exten-
sion of the work in [ 91]. The algorithm begins with a multi-
ple sequence alignment (e.g., of the type encountered in the
BLOCKS database [41]) and a collection C of sets of
events from the power set 2/Fl; the assumption is that the
events of each such set can replace one another without an
adverse effect on the function of the protein. This must be
taken into account during the pattern discovery process.
Beginning with the empty set, patterns are built by consider-
ing each of the columns of the aligned input in turn: the pat-
tern that is being built will expand to include the next
unvisited column as long as the resulting pattern has sup-
port that exceeds the preselected threshold. If the amino
acids occupying a column are unrelated (i.e., not captured
by any of the sets in C), then a wild-card symbol is intro-
duced for the column; on the other hand, if they can be
described equally well by more than one set in C, then the
most specific of these sets is used to represent the column.
Finally, if the column under consideration is occupied by a
single amino acid, then the latter is used to represent the
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column. Once the pattern is built, EMOTIF can be used to
search and enumerate the resulting space in an exhaustive
manner: for each of the possible choices within column i
that is supported by sufficiently many sequences (i.e.,
exceeds the predetermined threshold), the respective
sequences become propagated to column-(i+ 1) and the
process repeats. Use of either maximization of statistical
significance or minimization of entropy allows the ranking
of the patterns.

In work carried out in our group, we developed a two-
phase algorithm called TEIRESIAS [27, 28, 65, 66]. Dur-
ing a first scanning phase, the algorithm compiles a complete
collection of elementary patterns (elementary L-tuples of
events that span not more than W positions in any event
stream—<clearly, L < W). During the convolution phase, the
algorithm recursively combines them into increasingly
longer patterns of decreasing support that have the property
of being maximal with respect to both length and composi-
tion. The extent of the reported patterns is of course bounded
only by the size of the processed database.

Figure 1 depicts the convolution phase with two arbitrary
patterns being combined into a longer one. A left and a right
pattern from the pool of active patterns* each of which
carries a position list indicating where exactly it appears in
the processed database may be combined if and only if the
left pattern ends in a suffix of n non-wild card events that is
identical to a prefix of the right pattern: in the presence of
the suffix/prefix agreement, the position lists of the two pat-
terns are also examined for agreement and the pattern
resulting from the convolution is given a position list that is
the intersection of the position lists of the component pat-
terns.® The position lists of the two component patterns are
updated and returned to the pool of active patterns if their
support continues to exceed threshold. The order in which
convolutions are to be performed is decided through the use
of two partial orderings, prefix-wise and suffix-wise,® and is
essential in avoiding the generation of redundant patterns.
Finally, the algorithm guarantees that a// maximal patterns
with support exceeding the predetermined threshold are
reported.

In its original description, TEIRESIAS discovered pat-
terns of the type E(Eu {.})* E, ie., patterns comprising

4 At any time, the pool of active patterns comprises patterns that are not
maximal, have not yet been reported, and whose support still exceeds
threshold—initially the pool comprises only the elementary patterns.

° To guarantee completeness of results, #» must be equal to L — 1.

®Let ¢; and o, be two events from E and x, y two strings from
(Zu{.})* Then the prefix-wise partial ordering is defined as follows:
(a) 01x<pe &, D <pr X1, 01X<pe-y; (b) 01x <0,y if and only if
X <py and; (c) -x <pe-p if and only if x <, y. The suffix-wise partial
ordering is defined analogously as (a) xo, <4 &, & <4 X+, X0, <g y-; (b)
Xa1 <y Yo, if and only if x <y and; (c) x- <, y- if and only if x < y.
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FIG. 1. The convolution phase of TEIRESIAS.

either individual events or the don’t care character.
However, it is frequently desirable to carry out the dis-
covery process by permitting events from a small collection
to substitute for one another. For example, one may wish to
allow for the positively charged arginine to replace
the positively charged lysine and vice versa or allow for
any of the hydrophobic amino acids leucine, methionine,
isoleucine, and valine to indistinguishably replace one
another. We have thus further developed the algorithm to
allow for the discovery of patterns in the presence of a
collection C of sets of events from the power set 2/Fl, in a
manner similar to [ 46, 60, 79]. The patterns that the algo-
rithm can now accommodate belong to the set captured
by the regular expression (EU[EE*E])EVU[EE*E] v
{.})*(EU[EE*E]) v E. Note that the sets in the collection
C need not form a partition of E. Example collections for the
case of pattern discovery in biological sequences include
(a) C={{AG}, {C}, {D,E}, {F,Y}, {H}, {LLM,V},
{K,R}, {N,Q}, {P}, {S,T}, {W}}; (b) C={{A,G,CF)Y,
HLL,M,V.N,Q,P.S,T,W}, {D.E}, {K.R.H}}; (¢c) C=
{{A,G}, {A,G,PS,T}, {C}, {D,E}, {D,E,QN}, {K.R,H},
{LL,M,V}, {F,Y,W}}; and others. The actual choice of the
collection to use is dependent on the specifics of the problem
that is being addressed.

Finally, SPLASH [ 18] uses MOTIF as its starting point
and combines it with the “maximality” constraint to
generate its results. Because of its MOTIF-like origin, this
approach depends on the presence of identically conserved
amino acids that will serve as “anchor points” around which
larger patterns involving homologous substitutions can be
built.

4. APPLICATIONS OF PATTERN DISCOVERY

We will next describe several applications of pattern dis-
covery that our group and others have explored. Those of
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the applications which have wider applicability will be dis-
cussed in more detail.

4.1.1. Single and Composite Descriptors

Probably the first application of pattern discovery in
computational biology was that of determining sequence
features that have been conserved through evolution and
their eventual association with other functional or struc-
tural features.

In that regard, the PROSITE database [ 8] represents the
earliest concerted effort to compile a comprehensive collec-
tion of individual patterns that characterize small, curated
collections of proteins and protein fragments. What one is
after is the discovery of a combination of amino acids that
is present in all of the members of the protein collection
under consideration. This combination is given in the form
of a regular expression that is a characteristic descriptor for
the collection. The expression should be sensitive enough to
identify new, previously unknown members of the collection
but also specific enough so as to not generate erroneous
“hits.”

The various pattern discovery algorithms which have
been proposed over the years have used PROSITE entries
as benchmark tests. Of particular interest are those entries
that correspond to protein families as well as functional or
structural domains that exhibit extreme sequence diver-
gence: in these cases, weight matrices are given instead of
a single descriptor; these matrices allow the detection of
members of the class. Finding a succinct, descriptive pattern
to replace a weight matrix is thus always welcome. The
regular expression

[KR]...[ILMV]..L..[AG]..T..[ILMV]L....[AG]..
[AG].[ST].[FY][ILMV].[AG]

is an example of such a pattern. It was generated by running
TEIRESIAS on the sequences members of PROSITE entry
PS00347 (Rel. 15.0). The latter contains 10 sequences (of
which one is a short fragment) that are poly(ADP-ribose)
polymerases (PARPs). PARP is a eukaryotic enzyme that
catalyzes the covalent attachment of ADP-ribose units from
NAD( + ) to various nuclear acceptor proteins. PARPs con-
tain an N-terminus domain that binds specifically single-
stranded DNA in a zinc-dependent manner. PROSITE
reports both a pattern and a matrix for PS00347: the pat-
tern is present in only 8 of the 10 sequences, whereas the,
matrix allows the detection of only 9 of the 10 sequences.
The pattern we are reporting here is present in a// 10 of the
sequences in PS00347 and is specific enough to be used as
a predicate for identifying additional members of this collec-
tion. It is worth pointing out that the motif we report here
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comprises positions that are primarily chemically conserved;
indeed, there are only three locations (L, T, L) where the
respective amino acid is identically conserved.

As the databases grew in size, additional diverse and
important families of proteins became known and single
descriptors proved limiting for sufficiently characterizing
these families. Composite-descriptor approaches came to
alleviate some of the problems afflicting the single-descrip-
tor methods and representative such examples abound [ 5,
6, 30, 31, 32, 33, 37, 43, 72, 81]. The driving observation
behind composite descriptors is that many proteins are
composed of a small number of conserved elements each of
which could be represented by a descriptor. A collection
could then be represented by some subset of the patterns
corresponding to the identifiable conserved regions.

4.1.2. Discovery of Tandem Repeats in DNA Sequences

A tandem repeat is a collection of multiple instances of a
combination of nucleotides with the instances appearing
back to back (i.e., tandemly) in genomic DNA. Each
instance is a slightly modified form of the same basic unit.
The nature and extent of the basic unit as well as the
number of copies that make up a tandem repeat can vary
substantially both across repeats and across organisms.

The problem of tandem repeat discovery can be defined
as the determination of all tandem repeats present in the
input under consideration, the extent of the basic unit from
which the instances are derived, the number of instances
corresponding to the repeat, and their location in the pro-
cessed input.

There is a substantial body of work on the study of
tandem repeats due to their impact on chromosome pairing
and the resulting highly polymorphic repeat clusters.
References [51, 64] contain detailed discussions on the
various biological aspects relating to tandem repeats.

Early algorithmic work was carried out in the presence of
rather restrictive assumptions: for example, all instances of
the tandem repeat were required to be exact copies of the
basic unit, or approximate copies of the basic unit could be
allowed but only repeats comprising two copies of the basic
unit were sought [47, 49, 57].

More recently effective algorithms were proposed which
relax these assumptions: they begin with the identification
of tandem-repeat seeds or suspicious patterns which they
subsequently treat as candidates to be either verified or
rejected through examination of the respective neighbor-
hoods in the processed input [ 12, 13, 38]. For a detailed
review, from a computer science standpoint, of previously
reported algorithms, the reader can refer to [ 39].

It is fair to say that among the previously proposed algo-
rithms, those which produce exhaustive results can only be
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effective when the size of the processed genomic input is
relatively small, e.g., several hundred thousand nucleotides.
On the other hand, those algorithms that employ heuristics
can handle larger data sets at the expense of missing some
of the tandem repeats that are present in the input.

With this in mind, we designed an algorithm which per-
mits the discovery of tandem repeats when the copies of the
basic unit are approximate [ 82]. At the same time, our
algorithm imposes no limitation on the extent of the basic
unit or the number of copies and is efficient with large
inputs. If one thinks of the problem of tandem repeat iden-
tification as a pattern discovery problem, the basic observa-
tion that drives this approach is that a region containing a
tandem repeat will give rise to a large number of patterns
and their position lists will contain offsets that are very close
to one another.

On a given input, and after deciding the amount of varia-
tion that the basic unit can undergo,” we use the
TEIRESIAS algorithm to determine a// patterns that
appear two or more times. The algorithm’s guarantees of
discovering all patterns that are maximal in composition
and length and whose support is above a certain threshold
are naturally suitable for this. We define a function on
the position lists of the discovered patterns which when
evaluated at a given location returns a nonnegative value.
Using this function, we can zoom in to those of the locations
where the evaluation function exceeds an experimentally
determined threshold and further improve the localization
while discarding false positives. We finally report the
properties of the corresponding tandem repeat: extent of
basic unit, number of copies, absolute positions in the pro-
cessed input, and a score for the Clustal-w alignment [85]
of all the instances.

4.1.3. Multiple Sequence Alignment

In this section, we concern ourselves with the task of
aligning salient sequence features that are potentially pre-
sent in a given collection of proteins and protein fragments.
The sequences of the collection are presumed to be
homologous (i.e., ancestrally related).® As we have already
mentioned, the multiple sequence alignments of sequences
found early use in the discovery of patterns in biological
sequences.

We define the multiple sequence alignment problem as
follows: given a collection of N sequences, insert spaces

7 This can be effectively decided by an appropriate choice of the values
for the parameters L and W.

8 A variant of the problem attempts to align such inputs by focusing on
the alignment of functional or structural features that are shared by the
sequences in the collection of interest; obviously, this variant depends on
domain-specific knowledge that may or may not be available in the general
case.
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(gaps) into the sequences or at the beginning/end of them so
that the resulting sequences all have the same length. The
quality of the resulting alignment directly depends on the
scoring function that is used to reward agreements, penalize
mismatches and gaps, and bring out the best commonality of
these sequences.

In addition to their use in pattern discovery and the deter-
mination of conserved sequence features in proteins and
DNA, algorithms for multiple sequence alignment find
important uses in the representation of protein families and
superfamilies, the deduction of evolutionary history directly
from biological sequences, gene cloning, and shotgun
sequence assembly [39]. Not surprisingly, there has been
considerable research work that both examined the problem
per se and studied the impact of scoring functions on the
obtained results; references [ 3, 19, 39, 44, 56, 88] address
many of these points and the interested reader should refer
there for more details.

Multiple sequence alignment can be formulated in the
context of dynamic programming but the resulting space
requirements make such an approach applicable to sets con-
taining only very few, relatively short sequences. Conse-
quently, a large body of research work explored alternative
schemes that try to generate an optimal alignment of N
sequences through an iterative approach based on com-
parisons between pairs of sequences [ 25].

In the context of our work on the applications of pattern
discovery, we designed MUSCA, a two-phase algorithm for
computing the multiple sequence alignment for a set of NV
sequences. During the first phase, we discover patterns that
are common among a subset of the N sequences. We use
these patterns during the second phase to produce the mul-
tiple sequence alignment. The conceptual underpinnings of
this method can be traced to earlier work [75] where the
multiple alignment is driven by pairwise comparisons of the
processed input sequences. What distinguishes our work is
that it naturally disengages itself from the dependence on
the order in which the input sequences are considered and
that its starting point is a K-wise alignment (with K >2).

To begin, MUSCA uses TEIRESIAS to generate the pat-
terns that are present in the input sequences to be aligned.
The patterns are then mapped to vertices of a directed
graph. If two patterns p, and p; do not occur simultaneously
in any sequence, then there is no edge connecting the corre-
sponding vertices of the graph. An edge will connect the ver-
tices corresponding to p, and p; with direction from p, to p;
if’ p; occurs before p; in all the sequences where they both
appear. Edges are labeled depending on whether and p; and
p,; (a) are pairwise incompatible, (b) have overlapping
instances, or (¢) are pairwise compatible but do not overlap.
All vertices that are joined by incompatible edges as well as
those participating in inconsistent cycles comprise the basic
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infeasible sets. After labeling the vertices of the reduced
graph with the help of a simple cost function, we use a
greedy algorithm to obtain a solution to a weighted set-
cover problem that essentially identifies the minimum
number of patterns/vertices that must be removed. The
resulting graph is used to determine blocks that involve
overlapping feasible patterns. We obtain the final alignment
by properly aligning the blocks and padding up the existing
gaps.The resulting algorithm works very efficiently with
large inputs that contain long sequences and a detailed
description of it together with results on several benchmark
datasets can be found in [61].

In Fig. 2, we are showing a small example-alignment
generated by MUSCA. The input set was seven proteins
involved in transcription regulation that contain the MADS
domain; the proteins are from Arabipdopsis thaliana,
Brassica napus, Dianthus caryophyllus, Petunia hybrida,
Antirrhinum majus, and Nicotiana tabacum and were sub-
selected from the members of the prosite entry PS00350 [ 8].

4.1.4. Bio-Dictionary/Homology Searching/Functional and
Structural Annotation

The main characteristic of the early applications of pat-
tern discovery in the analysis of biological sequences was
that the processed datasets were curated collections of
sequences. The implicit assumptions made when compiling
such collections were that (a) the sequences/members of the
collection are indeed related, and (b) they form a single set
(as opposed to being the union of several smaller sets).

Such approaches make the discovery of conserved func-
tional and structural signals that cross family boundaries
difficult. Methods for sequence homology helped in that
respect but as the databases grew in size the statistical
thresholds were raised accordingly, effectively burying
otherwise valid telltale homologies.

Ideally, one would like to carry out unsupervised dis-
covery by treating the largest possible database as an
indivisible entity; doing so should in principle permit the dis-
covery of many more signals that are still conserved at the
sequence level. If we treat proteins as the biological analog
of sentences in natural languages, then any recurrent func-
tional and structural signals whose traces remain at the level
of the amino acid sequence should be observable as pat-
terns-words that are being reused. Figure 3 should help
appreciate the beneficial impact of a big database on the
completeness of the results that one obtains through
unsupervised pattern discovery. In this simple example, we
have removed the “spaces” between consecutive words and
the assumption is that the reader/database-miner does not
have knowledge of the English language. “Coherent” com-
binations of English letters will not be observed until there
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AGL_ARATH:
AG_BRANA:
AP1_ARATH:
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mayqmelggesspgrka-GRGKIEIKRIENt tNRQVTEcKRRNG1LKKAYEL1SVLCDAeVallv~----FSsrGrLyeysn
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FIG. 2. An example multiple-sequence alignment produced by MUSCA. The shown proteins are involved in transcription regulation. Those amino
acids that participated in the patterns that were used to induce the alignment are shown capitalized. Dashes represent inserted gaps. See also text.

is enough knowledge base to support them. The small
database shown in the figure begins with two streams and
reaches its final size through four more instalments. The
number of coherent letter combinations that can be dis-
covered increases after each instalment (indicated by rec-
tangles in the figure). However, as can be seen, there are still
parts of the database that cannot be accounted for.

|thi s|i sfone[exa.mpl e#o fwhatwe#usual]lybegi

\thi s'i sonelexamplgofwhatweusual 1ybegi

firstonlyafe exampl gstricklein

ttherxfmorebfwhatwerhavetodearrives

tthensomeonelcomesupwi tﬁanudusualbemethod

ntil

publicdatabasesgrowasaresultof]

hingelse

along

FIG. 3. Theimpact of having access to a large input database. See text
for an explanation.
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Although highly desirable, it was not until recently that
unsupervised pattern discovery on a large public database
was achieved [ 67 ]: using TEIRESIAS, we were able to pro-
cess the February 10, 1999 release of the GenPept database’
as a whole and generate a collection of almost 27 million
patterns that covered 98.12 % of all amino acid positions of
the processed input. The database contained a little over
387,000 proteins totalling approximately 120 million amino
acids. Due to its obvious analogy to natural languages, we
have been referring to the compiled collection of patterns
as the “Bio-Dictionary.” The pattern entries of the Bio-
Dictionary are called “seqlets.”

The Bio-Dictionary essentially contains compact descrip-
tors for almost all of the sequence space of natural proteins,
to the extent that this space is uniformly sampled by the
current contents of GenPept. Additionally, by associating
each of the seqlets with probability estimates (through a
second order Markov model) and currently available func-
tional (“Feature Table, FT” and “Description, DE” entries)

®The impact on performance would of course be different from
algorithm to algorithm.
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information from Swiss—Prot [ 7] and structural annotation
from the Protein Data Bank (PDB) [1], we obtain a com-
plete characterization of each discovered pattern. In Fig. 4, we
are showing an augmented such entry. However, it should
also be noted that there are Bio-Dictionary seqlets with no
instances in the PDB or which capture previously unobserved
signals for which there is no functional annotation in Swiss—
Prot: consequently these entries cannot be fully characterized
until more information becomes available.

The availability of the Bio-Dictionary has opened up new
opportunities in the study and analysis of proteins. First,
recall that, by definition, each seqlet of the Bio-Dictionary
is representative of a protein fragment which appears with
modifications across more than one input sequences. As
such, the seqlets denote and capture local homologies that
are shared by the respective sequences. When presented
with a query sequence for which we wish to determine the
existence of any similarities between it and sequences in
GenPept, we simply need to identify which of the seqlets are
present in the query: the sought similarities will correspond
to the region of the query that a seqlet covers and the
respective regions in the sequences that contain it. Fre-
quently, more than one seqlet will corroborate the same
local alignment and this needs to be taken into account. As
with traditional homology-searching algorithms, scoring
schemes can be imposed and used to rank the results. This
approach replaces an expensive search of a query against
the entire database by a much faster search against a dic-
tionary of patterns without compromising sensitivity; as the
contents of the Bio-Dictionary begin to saturate, the com-
putational savings of such searches are bound to become
substantial. A detailed discussion of this approach can be
found in [26].

Another straightforward use is in the definition of protein
families and domains using entries of the Bio-Dictionary.
Some of the patterns are specific enough to be used as family
predicates and for carrying out functional annotation of
proteins and protein fragments. Others correspond to
recurrent functional/structural elements.

In an analogous manner, those seqlets that have instances
in sequences of the PDB can be associated with structural
fragments: these structural fragments are the three-dimen-
sional realizations of the sequence substrings that the
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pattern captures. If there is more than one instance in the
PDB, an alignment of the fragments and a computation of the
respective RMS error provide an estimate of how well the
pattern can characterizes a local three-dimensional structure.
As in the case of homology searching, multiple patterns can
corroborate the same local three-dimensional structure.

The association of sequence patterns with three-dimen-
sional structure through supervised learning methods and
the subsequent exploitation of such associations have been
pursued for a number of years with increasing degrees of
success [17, 40, 45, 74]. What differentiates the Bio-
Dictionary approach is that treating the input database as
a whole allows for the exhaustive discovery of structural
signals which cross family boundaries and could have
otherwise remained unobserved.

Given a query, we can identify the seqlets that are present
in it and subselect only those with instances in the PDB: for
those regions of the query (possibly the entire query) that
are covered by such patterns we can in principle attempt to
predict the three-dimensional structure by piecing together
the structural fragments that correspond to successive, over-
lapping patterns. However, of course, the problem is not
that simple and many more things need to be taken into
account; we are currently in the process of studying this
problem in more detail.

Additional applications of the Bio-Dictionary together
with a detailed description of how it was generated can be
found in [67]. Details on Bio-Dictionaries that have been
compiled from complete genomes can be found in [68].

4.2. Association Discovery

The discussion so far involved situations where the length
of the various streams in the database under consideration
was variable and unbounded. Let us now consider a database
comprising streams each of which is of fixed length. Without
loss of generality, we can also assume that the event set is a
mixture of both categorical values and numerical events. With
this in mind we can alternatively view each of the streams as
a record composed of a fixed number of fields, each of the
fields representing the answer to a multivalued question. The
following is an example of a five-stream database with each
stream comprising six distinct events:

St = rent R&B romance

852 = rent rock fiction

§3= own jazz science-fiction
S4= own jazz romance
S5= rent R&B fiction
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BSc $30K 4 dr. sedan
MSc $50K 2 dr. hatchback
PhD $70K sports util, veh.
PhD $70K 4 dr. hatchback
MSc $30K 2 dr. sedan
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Seglet =C.[CVY]G.C..VCP

Log Probability= -33.055840

# of occurrences= 56 # of sequences =51

List of (Proteinld,Offset) pairs= [1598 415], [5102 215], [5938 416] ....
PDB Rel 38 Hits= 1bc6___15 1fca___ 1fdn___ 1ch___1 1fdx___
PDB RMS Error = 0.349209 Angstr.

3D Struct File = C..[CVY]G.C..VCP.mol2
Seqlet Annotat.= Iron-Sulfur (4FE-4S) binding

FIG. 4. An example augmented entry from the Bio-Dictionary. It consists of the actual seqlet, its estimated log probability, information about all
instances of the seqlet in the processed release of GenPept in the form of (protein id, offsets) pairs, the identities of those entries in the PDB that contain
an instance of the seqlet and the RMS error obtained from aligning the respective structural fragments, a functional “meaning” for the seqlet, and poten-
tially other information.

46 48 50 52 5 56 58 &0 &2

r-YIL136W h-YOLOG9W b-YOR176W hbh-YOLO44W b-YGR264C r-YHR193C b-YKLOO4W b-YDR43OW r-¥YPR102C r-YDR418W
b-¥DR173C b-YDR3IS56W b-YORZ78W r-YDRZ6HW r-YGL136W r-YMROG64AW r-YPLOSK7C r-YIL134W r-YELOSAC r-YHLOOIW
r-¥YGRO008C b-YLRO85C r-¥YBRZ48C r-YOR3IG3C r-YBLO92W b-YJROG4AW r-YHRI10W r-YBR13Z2C r-YELOOGW xr-YHLOGSC
b-YLR393W r-YLR172C r-¥YCLO30C b-YDE538W r-YOL127W r-YALOO3W b-YLR450W b-YJL219W r-¥YIL133C r-YHL301C
b-YPR122W r-YALO15C bh-YERO0G68W r-¥YDR123C r-¥Y6LO30W b-¥YKLO048C r-YCRO48W b-YIL171W r-YOL120C r-¥YBLO27W
b-¥YFLOS3IW b-¥YGL163C b-YPR141C r-YKL19BC r-YLR44BW r-¥YGROG1C b-YORZ3ITW b-YJL214W r-YMR242C r-YPLOTOW
b-¥YLR102C b-YMLO32C b-¥GL192W r-YJROSOW r-¥YPLI1G9BW r-¥JL130C r-¥YIL101C b-YIL170W r-YLR344W r-YER117W
Tr-¥YALQ40C b-YELO37C bh-YHLO12W b-YORZ61C r-¥YGL147C r-¥YMRZ71C r-¥BROGTC b-YOL156W r-YHRO1O0W r-¥YGR148C
r-YMR199W h-YLRZ288C b-YOLO064C bh-YDL147W r-YGR214W b-¥YBRO37C b-YDR148C r-YER145C r-¥YDLOT5W r-¥GRO34W
b-¥YDLO17W h-YHR164C r-¥YDR502C bh-¥YGRZ270W r-YOLO40C r-¥YBR167C b-YGRODOW b-YMROG6C r-YPL143W r-YDR4ATIW
b-¥JL013C r-YKLO17C r-¥CROLK0C b-¥YDROLKOC r-¥GL123W r-¥FLOO02C b-¥YMLO43C »r-YBR222C r-YPRO4IW r-YOR23I4C
b-¥YGR049W b-YLR274W r-YHL131W b-YDRO54C r-YHRZ03C r-YOROO0IW b-YORZ20C r-YOR348C r-YDL1%1W xr-YILOSZC
r-YILO35C x-¥GR180C b-YIR115W hbh-YDLOG4W r-YORODGW r-YORO2B8C r-¥YGRO63IC r-YMR3I0IC r-YLR1BSW r-¥YDL136W
b-YER176W h-YKRO010C b-YIL0O30C r-¥YBLOG7C x-YNLO9G6C r-¥YGLO19W r-¥GLO43W r-YDR135C r-YIL148W r-YHR141C
r-¥GR282C b-YPL162W r-¥GR178BC r-¥YBROGKBC r-¥YBLO72C b-¥YKL196C b-YFLO3&W b-YILO75C r-YHL1&62W r-¥YDLO83C
r-YLR286C b-YORO034C b-¥YGRO13W r-¥YDR155C r-YER102W r-¥YMRI83C r-¥YDR3I®7C b-YMLO%IC r-YOR293IW r-YHL302ZC
bh-¥BR195C r-YJRO192C b-YPR178W r-YMLO74C r-YPLO81W b-¥YKL122C r-¥YPLO37C r-¥CLO17C r-¥YCRO3IIC r-YJL136C
b-YOLO12C »-¥GLO35C r-¥BLO74C h-¥YCL043C r-YELOSOC r-¥YFLO48C b-YDL150W r-YHR163W r-YOL121C r-¥YPR132W
b-¥YLL022C r-YLR142W b-¥YPL253C r-YDR483W r-YHR147C b-¥DL22&6C r-YPRIB7TW r-YEROSOW r-YKROSTW r-¥YLR333C
r-¥YDR174W r-YJL101C r-¥YMR3I0BC b-YELZ201C r-Y¥IR113C b-YKR101W b-YER148W b-YJLO024C r-Y¥GR118W r-YER131W
bh-YKL049C r-YBR145W b-YER107C r-YML115C r-¥YDE3I85W b-YOL068BC b-¥YPL122C r-YBLO17C r-YGROZ27C xr-YHROZ21C
r-YBLO97W r-YOR344C bh-YOLOG67C h-YPLOGOC r-YOR133W b-YJLO76W hb-YDRIGHZ2C b-YPL120W r-YGL189C r-YDLOG1C
b-¥YDR51SW b-YOLOSE6W b-YBLOSGW r-YGR147C r-YLROG9C b-YKRO19C b-YPR104C b-YOL109W r-YKL156W r-YBROBAC-A
b-¥FLO3ITW r-YGROB7C r-YORO79C r-YHLZ247TW b-Y¥IL102W r-YLRZ60W r-YMRO3IOC »r-YKROSZW r-YLRISHW

bh-¥YHL126W r-YALO3IBW r-YORO09HC r-YOR16BW r-YGRO094W r-YBRO36C h-YHR119W b-YER105C r-¥GRO85C

FIG. 7. An example of a relationship among 248 genes that can be discovered by applying the TEIRESIAS pattern discovery algorithm on the signs

of the derivatives of the raw expression ratios of [ 24] from S. cerevisiae, after they have been quantized. The identities of these 248 genes are also shown.
Each gene’s identifier is prefixed by either “b” or “r” depending on whether the gene belongs in the “blue” or the “red” group. See also text.
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b-YEROOIW MHH1 PEOTEIN GLYCOSYLATIOH ATLPHA-1, 3-MAHNHOSYLTRAHSFERASE
b-¥YDR3I41C HOWE PEOTEIH SYHTHESIS APGIHIHNE-TEHA SYHTHETASE

b-YGR264C MES1 PROTEIH SYHTHESIS METHIOHYL TEHA SYHTHETASE

b-YOR293W RFPS10A PROTEIN SYHTHESIS RIBOSOMAL PROTEIN S510a

b-YDR3IS9W HPT1 PURIHE BIOSYHTHESIS HYFOXAHNTHINE GUANIHE PHOSPHORIEBOSYIL TRANSFERASE
b-¥YBLO3QC URAT PYPTHMIDIHNE BIOSYNTHESIS CTP SYHTHASE 1

r-YKELO35W UGP1 PYRIMIDIHE METABOLISM UGP1l, UDP-GLUCOSE PYROPHOSPHORYLASE

b-¥GL171W ROK1
b-YTROOT MPP10
b-YPL211W HIP7
h-YPL266W DIM1
r-YPR14%W HCE102
b-YMR127C SAS2
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b-¥YJL148W RPA34
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FIG. 8. An example of a relationship among 40 genes that can be discovered by applying the TEIRESIAS pattern discovery algorithm on the signs

of the derivatives of the raw expression ratios of [ 24] from S. cerevisiae, after they have been quantized. The identities of these 40 genes are also shown.
Notice that the expression profile agreement extends over three distinct time intervals. See also text.
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There are numerous contexts where the database to be
processed is such as the one shown here and any patterns
that can be discovered in it have actual commercial value.
Examples of patterns that can be found in this mini-data-
base include “rent R&B..$30K” and “own jazz - PhD $70K.”
Considerations such as maximality of patterns, minimum

Rigoutsos et al.

allowed density, and minimum support carry in a natural
manner.

It should be noted that pretty much all of the pattern discov-
ery algorithms that we have discussed can in principle be modi-
fied (with varying degrees of difficulty) to handle inputs of this
type.'? In fact, whether the database is presented as above, or as

St= 1 3 6
52= 1 4 7
§3= 2 5 8
S4= 2 5 6
S5= 1 3 7

or as

S1=€1 83 €6 €9 €12 €15

Sz=€] €4 €7 €10 €13 €16
§3=€2 €5 €3 €11 €14 €17
S4=€2 €5 €6 €11 €14 €18
S5= €1 €3 €7 €10 €14 €19

with E = {els €5, €3, €4, €5, €¢, €7, €3, €9, €19, €11, €12, €13,
€14 €15, €16, €17, €15, €10}, the amount of information
remains the same. Patterns discovered on an input of this
type (fixed length) are typically thought of as “associa-
tions,” and the problem of discovering these patterns is
referred to as “association discovery.”

We can define the problem of association discovery as
follows: given a database of N records each of which com-
prises two or more fields, determine the set of all possible
associations that involve at least two fields and which are
supported by at least K records, with 2< K< N.

The problem of finding maximal associations is computa-
tionally very demanding. Using brute force, one can tackle
the problem in one of two ways:

(I) Form all subsets of two or more records and
examine all their fields in order to identify the maximal
intersection (equivalently: maximal association). If the
dataset contains N records, then all 2 possible groupings
(i.e., the power set of the input) need to be considered, only
a subset of which leads to intersections involving K or more
records: the approach quickly becomes very prohibitive as
the number N of records increases.

9 12 15
10 13 16
11 14 17
11 14 18
10 14 19

(2) Enumerate each of the (|E|+1)=(|E|+1)=*
.-« % (|E| +1) combinations of values (i.., traverse all
points of the underlying lattice) and for each of them iden-
tify that subset of records that contains the combination
under consideration.!' As before, the approach quickly
becomes prohibitive as the number of fields, F, increases.

Depending on the specifics of the database under con-
sideration, choice (1) may be more efficient than choice (2),
or vice versa. In both cases, the computation quickly
becomes prohibitive as the number of records and the
number of fields increase. Since we are interested in asso-
ciations that are supported by a minimum of K records,
unpromising paths can be pruned early leading to sub-
stantial performance gains but the problem still remains
computationally demanding.

Finally, it should be noted that the input may be quan-
tized and classes of equivalent symbols that correspond to
neighboring quantization bins can be established before
carrying out association discovery.

4.2.1. Gene Expression Analysis

In the past several years, considerable research effort has
been invested in the analysis of gene expression data. In
such studies one seeks to first establish and then exploit
significant relationships among individual genes. Typical
applications include the study of preferential gene expres-
sion in specific tissues, the study of transcription differences
that are responsible for the transition from normal to
abnormal cell behavior, the study of gene transcription
changes as the result of a cell’s natural development or its
response to environmental changes and signals, etc.

19 The impact on performance would of course be different from algo-
rithm to algorithm.

' Notice that here we have assumed the availability of the “don’t care”
character.
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Technological advances during the past decade led to the
advent of DNA array technology and its natural application
to the study of gene expression. One can identify two basic
types of DNA arrays: the first type is known as the “DNA
chip” and comprises a large number of oligonucleotides
each of which is synthesized in situ on solid support using
known sequence information [29]; the second type is
known as the “microarray” and consists of a collection of
DNA targets, usually PCR products from cDNA or
genomic clones arrayed on solid support [ 73]. Independ-
ently of the type of the array the remaining steps are essen-
tially the same: mRNA that has been purified from
experimental samples from the cell line or tissue to be
studied is labeled with a fluorescent dye (e.g., “red”) whereas
a reference sample is labeled with a different fluorescent dye
(e.g., “green”). Both labeled samples are then allowed to
hybridize (i.e., base-pair) with the targets of the used DNA
array. After hybridization has completed, the DNA array is
washed to remove any unbound mRNA probe and scanned
with the help of a laser that is used to excite the molecules
of the fluorescent dye. The emitted light is captured by an
appropriate detector such as a confocal microscope and the
light’s intensity is recorded for each of the two dyes: those
locations of the DNA array that have more bound probe
will fluoresce more strongly. For each target of the DNA
array, and for the corresponding probe, the ratio of concen-
trations between the studied cell line or tissue and the
reference sample can be computed as the ratio of the
fluorescence intensities for each of the two dyes. These inten-
sity ratios are typically log-transformed so that inductions
and repressions of identical magnitude will give rise to
values with opposite signs, whereas probes whose expres-
sion levels have remained unchanged will generate log ratios
with value 0.

Clearly, the comparative studies that can be afforded by
this new and exciting technology are limited only by the
experimenters’ imagination. Nonetheless, all of the possible
applications can essentially be assigned to one of two
categories depending on the nature of the data being
generated.

The first category includes experiments which attempt to
capture and characterize the microscopic state of a cell (or
tissue, plant, etc.) and associate it with an observable, static,
macroscopic state. For example, given a collection of M
corn plants for which we also know the values of observable
properties such as rate of drydown, stalk lodging, root lodg-
ing, percentage of dropped ears, plant height and ear
height, we determine the level of expression for each one of
N genes of interest. The (7, j)th entry of the resulting M by
N matrix is the level of expression of the jth gene in the ith
plant. What is sought is one or more associations of some
subset of the N genes (and their respective expression levels)
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with some subset of the observable plant properties. Such
associations essentially hypothesize a causal relationship
between genotype and phenotype that can be corroborated
or refuted through further study.

In the second category, we have dynamic studies that
attempt to track the induction or repression of various
genes as a function of time; such changes can be part of a
cell’s natural development or the response to environmental
changes or signals. A representative example is the aggrega-
tion of data from experiments on the budding yeast
S. cerevisiae that are reported and discussed in [24]: each
one of the M genes in S. cerevisiae is tracked for a total of
N time steps and its expression level recorded; among
others, these N time steps include observations during the
course of natural cell stages such as the mitotic cell division
cycle, as well as responses to high- and low-temperature
shocks. The (i, j)th entry of the resulting M by N matrix
is the (log-transformed) expression of the ith gene as
measured at the jth time step. What is sought in this case is
the identification of genes that have similar (resp. opposite)
expression profiles. Such profiles can be indicative of the
status of cellular processes. Also, profiles that are shared by
genes of known function and uncharacterized or novel genes
may be helpful in elucidating the function of the latter.

In the general case, one can think of the input as being an
M by N matrix of real numbers with the task at hand being
the identification of relationships involving subsets of the rows
and subsets of the columns of this matrix. Establishing such
relationships is important because they can be turned into
hypotheses about information flow from/to the correspond-
ing genes or can be combined to generate putative network
models involving these as well as additional genes [23].

Most of the analyses that have appeared in the literature
and which attempt to generate such hypotheses treat the
columns of the data matrix as points in a high-dimensional
space and apply traditional clustering/partitioning techni-
ques [ 11, 23, 24, 52, 55, 84, 90]. The results obtained so far
using clustering methodologies have been very encouraging.
However, it should also be pointed out that in the general
case and for a given collection of studied genes, clustering
methodologies can capture only a subset of the relationships
that potentially exist among the studied genes. Indeed, the
typical clustering algorithm allows a given gene to par-
ticipate in a single cluster. However, this is rather limiting
since a given gene may simultaneously belong to multiple
clusters for different reasons. Additionally, clustering
schemes seek to form clusters whose members are globally
similar: for example, by applying clustering to gene expres-
sion data from dynamic studies we will form clusters of
genes whose expression profiles agree (within threshold)
across all (or most of the) N time steps. Any agreements in
the expression profiles of a subset of the M genes that span
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only a fraction of the N time steps are thus likely to remain
unnoticed.

It should be clear that the computational questions from
both of the above categories can be recast in the context of
association discovery with the M by N expression level/ratio
matrix being essentially similar to the matrices we examined
in the previous section. This formulation of the problem as
well as the above considerations regarding the use of
clustering approaches makes gene expression analysis a
natural application for pattern discovery. Pattern discovery
essentially subsumes clustering-based methodologies since
it can permit a given gene to participate in more than one
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cluster: for an input matrix involving M rows, a pattern dis-
covery-based approach will form and report all the subsets
from the power set 2* whose support exceeds the predeter-
mined threshold.

In what follows, we will showcase the applicability of pat-
tern discovery using the budding yeast S. cerevisiae data
from [ 24]. This input represents an aggregation of expres-
sion data at 79 time points from time courses during the
following processes: the cell division cycle after syn-
chronization by alpha factor arrest (18 time points), cen-
trifugal elutriation (14 time points) and with a temperature-
sensitive cdcl5S mutant (15 time points), sporulation (11
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FIG. 5. An example of a relationship among 23 genes that can be discovered by applying the TEIRESIAS pattern discovery algorithm on the raw
expression ratios of [ 24] from S. cerevisiae. The identities and functional information of these 23 genes are also shown. See text for more details.
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time points in total), heat shock (6 time points), shock by
reducing agents (4 time points), cold shock (4 time points),
and the diauxic shift (7 time points). A characteristic of this
dataset is that it only contains the 2467 genes from
S. cerevisiae which are currently functionally annotated.
The actual input table of ratio values was obtained from the
website http://rana.stanford.edu/clustering.

We first applied TEIRESIAS on the raw input, i.e., the
matrix of ratios. The algorithm generated several million
patterns which involved 10 or more genes. Essentially all the
gene groups that are reported in [ 24 ] were discovered as well
as many more additional ones involving a subset of the 79
time steps and genes of different functions. One such example
can be seen in Fig. 5. It corresponds to 23 genes whose expres-
sion profiles coincide during time steps 33 through 47
inclusive but agree nowhere else; as can also be seen from the
figure, these genes span several functional categories.

Instead of applying pattern discovery directly on the raw
expression ratios, one can instead relax the requirement that
the ratios agree in value and instead use as an alternative
representation for the input the sign of the input’s derivatives.
For each of the 2467 genes of the input the expression ratio
values were quantized using three quantization steps for
every unit of expression ratio; the quantized values, which
essentially smoothed the input array, were then replaced by
the signs of their derivatives. We essentially rewrote the
original input using a three-symbol alphabet: + if the
expression level increased with respect to the previous time
point, — if it decreased, and 0 if it remained unchanged. We
applied TEIRESIAS on this rewritten input and generated
numerous patterns that involved subsets of the 2467 genes.
As can be seen from Fig. 6, this new representation scheme
allows us to discover a relationship involving four times as
many genes as before and whose profiles coincide during
time steps 33 through 47 inclusive; notice that the expres-
sion profile of these 92 genes follows the shape of the expres-
sion profile of the 23 genes from Fig. 5. As before, the 92
genes span several distinct functional categories.

However, there is much more that can be achieved by
applying pattern discovery on such inputs. In particular,
discovering groups of genes that are inversely regulated is
now a straightforward task as is evidenced by Fig. 7. In this
figure, we are showing the expression profiles of 248 genes
which again cross functional boundaries; the genes com-
prise two groups of 94 (=blue) and 154 (=red) genes,
respectively, with the two groups being inversely regulated
during time steps 48 through 59 inclusive.

Finally, in Fig. 8, we are showing the expression ratio
profiles for 40 genes that again cross functional boundaries.
The 40 genes belong to two groups comprising 26 ( = blue)
and 14 ( =red) genes, respectively, with the two groups
being inversely regulated in the time intervals 19 through 32
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YGL134W YHROA2ZW YJL136C YBRI1923C
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YDL15 5w ¥YDL217C YDRIITW YHROS5 OW
YARO1OC YFROZ28C YJROGAW YHNL31BC
YGL220C YDRIOAW YDRAAIC YKL217wW
YILOOOW YIRO93C YFLO5BW YFRO20W
YPROS2C YMRZ40C YBRO3IC YDR160W
YHR107C YMRZ68C YHROB9C YHLO16C
YJROGSHC YDRAT3C YCLOO1IW YMRZ261C
YDR3IGOC YHRZ06W YELO22W YOR125C
YER1G2C YDRAG1C YDL195W YPLOGHW
YBRZ78W YDR123C YOLOG62C YDRASSC

FIG. 6. An example of a relationship among 92 genes that can be dis-
covered by applying the TEIRESIAS pattern discovery algorithm on the
signs of the derivatives of the raw expression ratios of [24] from
S. cerevisiae, after they have been quantized. The identities of these 92
genes are also shown. See also text.

inclusive, 59 through 64 inclusive, and 74 through 79
inclusive. The expression profiles of these genes disagree at
all remaining time points.

These examples demonstrate the kind of results that can
be obtained by applying pattern discovery methodologies
on gene expression data. Although we have showcased this
on dynamic data (expression ratios at distinct time steps),
the approach is equally well applicable to what we referred
to above as static inputs.
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4.3. Other Extensions

As evidenced by research papers in recent computational
biology conferences [ 14, 20], there is increasing interest in
the development of machine learning methods for extracting
useful information from textual databases that contain
information about biological sequences.

The issues and consideration are the same as in the case
of the other databases that we have already discussed in this
presentation, thus making this problem naturally suitable
for treatment by pattern discovery methods. The complete-
ness of the reported results and the guarantee of maximality
in composition and length are essential ingredients here as
well.

To showcase the power that a pattern discovery approach
can bring to solving this problem, we applied TEIRESIAS
to a well-known piece of literature, namely “A Tale of Two
Cities” by Charles Dickens. After mapping all nouns to their
singular form and the verbs to the corresponding infinitive,
we compiled the text’s vocabulary which contained 7768
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words. We then replaced each paragraph of the original text
by a stream of integers corresponding to the vocabulary
index of the words that were replaced. TEIRESIAS subse-
quently processed the integer streams searching for patterns
that had a minimum allowed density of L =4 integers/
words that were not more than W =S8 positions apart. In
Fig. 9, we are showing some of the discovered patterns: for
each pattern, we are also showing the number of its instances
followed by the number of paragraphs that contained these
instances. As before, the wild cards are placeholders for
events (in this case, words) that could not be dereferenced.

Finally, in closing, and in addition to all of the mentioned
applications of pattern discovery in molecular biology, we
should also mention its application to the discovery of
regulatory elements in genomic DNA. So far, there has been
a small number of publications that address this topic from
a data-mining perspective [9, 10]. However, given the suc-
cessful results reported therein, we anticipate an increase in
the number of practitioners that will pursue this line of
research in the foreseeable future.

I BE THE RESURRECTION AND THE LIFE SAITH THE LORD HE THAT BELIEVETH IN ME THOUGH HE BE

SHALL HE LIVE AND WHOSOEVER LIVETH AND BELIEVETH IN ME SHALL NEVER DIE
OF THE GOOD REPUBLICAN BRUTUS OF ANTIQUITY

REPUBLIC ONE AND INDIVISIBLE OF LIBERTY EQUALITY FRATERNITY OR DEATH
ONE THOUSAND SEVEN HUNDRED AND
ONE THOUSAND SEVEN HUNDRED AND
FOR HALF A GUINEA
HER WAY ALONG THE STREET
MY HUSBAND MY FATHER AND MY BROTHER

. . HAVE

STILL MADAME DEFARGE PURSUE HER WAY ALONG THE STREET COME NEAR AND NEAR

CARTON STILL DRINKING THE PUNCH REJOIN WHY SHALL I

FOR THE LOVE OF HEAVEN OF JUSTICE OF GENEROSITY OF THE HONOUR OF YOUR NOBLE NAME
A WHITE-HAIRED MAN SAT ON A LOW BENCH STOOPING FORWARD AND VERY BUSY MAKE SHOE
LEAN AGAINST THE DOOR-POST KNITTING AND SAW NOTHING

I'D CATCH HOLD OF YOUR THROAT AND CHOKE YOU FOR HALF A GUINEA

THE OLD SYDNEY CARTON OF OLD SHREWSBURY SCHOOL

BUT NOT STRAIGHT HAVE A PECULIAR INCLINATION TOWARDS THE LEFT CHEEK

THE

AS

. STRONG GATE
REPUBLIC ONE AND INDIVISIBLE LIBERTY EQUALITY FRATERNITY OR DEATH

Some of the patterns that are present in “A Tale of Two Cities” by Charles Dickens. Only elementary patterns involving a minimum of four

words such that the first and last words were not more than seven words apart were sought. Preceding each pattern is the number of occurrences (first
number column) and the number of paragraphs containing those occurrences (second number column).
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5. DISCUSSION

In this paper, we discussed the increasing use of pattern
discovery techniques in addressing problems from computa-
tional biology. We began with a historical perspective on
some of the algorithms that have been proposed over the
years, the type of patterns that they handled, and the
properties they exhibited. We then proceeded with the
presentation of several important computational biology
applications, the types of approaches that have been used so
far in tackling them, and some of the newer approaches that
revolve around the use of pattern discovery ideas. This by
no means represents an exhaustive coverage of all the
methods that have appeared in the literature and should
instead be considered a rather short treatise on the
possibilities that are opening up for people in the computa-
tional biology domain as a result of the availability of pat-
tern discovery-tools. Our intent was to briefly describe some
of the more prominent applications of the basic techniques
in the hope that the readers will borrow ideas from these
methods and devise new ones.

Note added in proof. Access to Web-based versions of some of the
described algorithms, as well as downloadable executable code and
Bio-Dictionaries for several complete genomes, is provided through the
Bioinformatics and Pattern Discovery Group’s Web page at http://www.
research.ibm.com/bioinformatics/.
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