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Motivation: Network Analysis

Network

+ Network 
Analysis =

Who are the 
“central” 

individuals?

What are the 
communities?

What are the 
common 

interaction 
patterns/motifs?



Wealth of Data
 Inundated with data describing networks
 But much of the data is 
 noisy and incomplete
 at WRONG level of abstraction for analysis



Graph Transformations

Data Graph ⇒ Information Graph

HP Labs, Huberman & Adamic

1. Entity Resolution: mapping email addresses to people
2. Link Prediction: predicting social relationship based on communication
3. Collective Classification: labeling nodes in the constructed social network



Overview: Graph Identification
 Many real world datasets are relational in nature

 Social Networks – people related by relationships like 
friendship, family, enemy, boss_of, etc.

 Biological Networks – proteins are related to each 
other based on if they physically interact

 Communication Networks – email addresses related 
by who emailed whom

 Citation Networks – papers linked by which other 
papers they cite, as well as who the authors are

 However, the observations describing the data are 
noisy and incomplete

 graph identification problem is to infer the 
appropriate information graph from the data graph



Roadmap
The Problem
The Components

 Entity Resolution
 Collective Classification
 Link Prediction

Putting It All Together
Open Questions



Entity Resolution 
The Problem
Relational Entity Resolution
Algorithms



before after

InfoVis Co-Author Network Fragment
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The Entity Resolution Problem

“James Smith”

Issues:
1. Identification
2. Disambiguation

“J Smith”

“J Smith”



Pair-wise classification
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Attribute-based Entity Resolution

1. Choosing threshold: precision/recall tradeoff
2. Inability to disambiguate
3. Perform transitive closure?



Entity Resolution 

The Problem
Relational Entity Resolution
Algorithms



Relational Entity Resolution
 References not observed independently

 Links between references indicate relations between 
the entities

 Co-author relations for bibliographic data
 To, cc: lists for email

 Use relations to improve identification and 
disambiguation

Pasula et al. 03, Ananthakrishna et al. 02, Bhattacharya & Getoor 
04,06,07, McCallum & Wellner 04, Li, Morie & Roth 05, Culotta & 
McCallum 05, Kalashnikov et al. 05, Chen, Li, & Doan 05, Singla & 
Domingos 05, Dong et al. 05



Relational Identification

Very similar names.
Added evidence from 
shared co-authors



Relational Disambiguation

Very similar names 
but no shared 
collaborators



Collective Entity Resolution 

One resolution 
provides evidence 
for another => joint 
resolution



Entity Resolution with Relations
 Naïve Relational Entity Resolution

 Also compare attributes of related references 
 Two references have co-authors w/ similar names 

 Collective Entity Resolution
 Use discovered entities of related references
 Entities cannot be identified independently
 Harder problem to solve



Entity Resolution 
 The Problem
 Relational Entity Resolution
 Algorithms

 Relational Clustering (RC-ER)
• Bhattacharya & Getoor, DMKD’04, Wiley’06, DE Bulletin’06,TKDD’07



P1: “JOSTLE: Partitioning of Unstructured Meshes for 
Massively Parallel Machines”, C. Walshaw, M. Cross, 
M. G. Everett, S. Johnson J

P2: “Partitioning Mapping of Unstructured Meshes to 
Parallel Machine Topologies”, C. Walshaw, M. Cross, M. 
G. Everett, S. Johnson, K. McManus J

P3: “Dynamic Mesh Partitioning: A Unied Optimisation and 
Load-Balancing Algorithm”, C. Walshaw, M. Cross, M. 
G. Everett

P4: “Code Generation for Machines with Multiregister 
Operations”, Alfred V. Aho, Stephen C. Johnson, 
Jefferey D. Ullman J

P5: “Deterministic Parsing of Ambiguous Grammars”, A. 
Aho, S. Johnson, J. Ullman J

P6: “Compilers: Principles, Techniques, and Tools”, A. Aho, 
R. Sethi, J. Ullman
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Relational Clustering (RC-ER)
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A. Aho S. JohnsonJ. Ullman
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Cut-based Formulation of RC-ER

S. Johnson

S. Johnson

Stephen C. 
Johnson

S. Johnson

M. G. Everett

M. Everett

Alfred V. Aho

A. Aho

S. Johnson

S. Johnson

Stephen C. 
Johnson

S. Johnson

M. G. Everett

M. Everett

Alfred V. Aho

A. Aho

Good separation of attributes
Many cluster-cluster relationships
 Aho-Johnson1, Aho-Johnson2, 

Everett-Johnson1

Worse in terms of attributes
Fewer cluster-cluster relationships
 Aho-Johnson1, Everett-Johnson2 



Objective Function

 Greedy clustering algorithm: merge cluster pair with max 
reduction in objective function

Common cluster neighborhood Similarity of attributes

weight for 
attributes

weight for 
relations

similarity of
attributes

Similarity based on relational 
edges between ci and cj

 Minimize:

∆ ( , ) ( , ) (| ( )| | ( )|)c c w sim c c w N c N ci j A A i j R i j= + 

),(),( jiRRj
i j

iAA ccsimwccsimw +∑∑



Measures for Attribute Similarity
 Use best available measure for each attribute

 Name Strings: Soft TF-IDF, Levenstein, Jaro

 Textual Attributes: TF-IDF

 Aggregate to find similarity between clusters
 Single link, Average link, Complete link
 Cluster representative



Comparing Cluster Neighborhoods
 Consider neighborhood as multi-set 

 Different measures of set similarity
 Common Neighbors: Intersection size
 Jaccard’s Coefficient: Normalize by union size
 Adar Coefficient: Weighted set similarity
 Higher order similarity: Consider neighbors of 

neighbors



Relational Clustering Algorithm
1. Find similar references using ‘blocking’
2. Bootstrap clusters using attributes and relations
3. Compute similarities for cluster pairs and insert into priority 

queue

4. Repeat until priority queue is empty
5. Find ‘closest’ cluster pair
6. Stop if similarity below threshold
7. Merge to create new cluster
8. Update similarity for ‘related’ clusters

 O(n k log n) algorithm w/ efficient implementation 



Entity Resolution 
 The Problem
 Relational Entity Resolution
 Algorithms

 Relational Clustering (RC-ER)
 Probabilistic Model (LDA-ER)

• SIAM SDM’06, Best Paper Award

 Experimental Evaluation



Discovering Groups from 
Relations

Bell Labs Group

Alfred V Aho

Jeffrey D Ullman

Ravi Sethi

Stephen C Johnson

Parallel Processing Research Group

Mark Cross

Chris Walshaw Kevin McManus

Stephen P Johnson

Martin Everett

P1: C. Walshaw, M. Cross, M. G. Everett, 
S. Johnson

P2: C. Walshaw, M. Cross, M. G. Everett,
S. Johnson, K. McManus

P3: C. Walshaw, M. Cross, M. G. Everett

P4: Alfred V. Aho, Stephen C. Johnson, 
Jefferey D. Ullman

P5: A. Aho, S. Johnson, J. Ullman

P6: A. Aho, R. Sethi, J. Ullman



Latent Dirichlet Allocation ER 

P
R

r

θ

z

a
T

Φ

A
V

α

β

 Entity label a and group label z
for each reference r

 Θ: ‘mixture’ of groups for each 
co-occurrence

 Φz: multinomial for choosing 
entity a for each group z

 Va: multinomial for choosing 
reference r from entity a

 Dirichlet priors with α and β



Entity Resolution 
 The Problem
 Relational Entity Resolution
 Algorithms

 Relational Clustering (RC-ER)
 Probabilistic Model (LDA-ER)
 Experimental Evaluation



Evaluation Datasets
 CiteSeer

 1,504 citations to machine learning papers (Lawrence et al.)
 2,892 references to 1,165 author entities

 arXiv
 29,555 publications from High Energy Physics (KDD Cup’03)
 58,515 refs to 9,200 authors

 Elsevier BioBase
 156,156 Biology papers (IBM KDD Challenge ’05) 
 831,991 author refs
 Keywords, topic classifications, language, country and affiliation 

of corresponding author, etc



Baselines
 A: Pair-wise duplicate decisions w/ attributes only

 Names: Soft-TFIDF with Levenstein, Jaro, Jaro-Winkler
 Other textual attributes: TF-IDF

 A*: Transitive closure over A

 A+N: Add attribute similarity of co-occurring refs
 A+N*: Transitive closure over A+N

 Evaluate pair-wise decisions over references
 F1-measure (harmonic mean of precision and recall)



ER over Entire Dataset

 RC-ER & LDA-ER outperform baselines in all datasets
 Collective resolution better than naïve relational resolution
 RC-ER and baselines require threshold as parameter

 Best achievable performance over all thresholds 
 Best RC-ER performance better than LDA-ER
 LDA-ER does not require similarity threshold

Collective Entity Resolution In Relational Data, Indrajit Bhattacharya and Lise Getoor, 
ACM Transactions on Knowledge Discovery and Datamining, 2007

Algorithm CiteSeer arXiv BioBase
A 0.980 0.976 0.568
A* 0.990 0.971 0.559

A+N 0.973 0.938 0.710
A+N* 0.984 0.934 0.753

RC-ER 0.995 0.985 0.818
LDA-ER 0.993 0.981 0.645



ER over Entire Dataset

 CiteSeer: Near perfect resolution; 22% error reduction
 arXiv: 6,500 additional correct resolutions; 20% error reduction
 BioBase: Biggest improvement over baselines

Algorithm CiteSeer arXiv BioBase
A 0.980 0.976 0.568
A* 0.990 0.971 0.559

A+N 0.973 0.938 0.710
A+N* 0.984 0.934 0.753

RC-ER 0.995 0.985 0.818
LDA-ER 0.993 0.981 0.645
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Collective Classification 
The Problem
Collective Relational Classification
Algorithms



Traditional Classification

Training Data Test Data

Y

X3
X2

X1

Predict Y based on
attributes Xi



Relational Classification (1)

Training Data Test Data

Correlations among linked instances
autocorrelation: labels are likely to be the same
homophily: similar nodes are more likely to be linked



Relational Classification (2)

Training Data Test Data

Irregular graph structure



Relational Classification (3)

Training Data Test Data

Links between training set & test set 
learning with partial labels or within network classification



The Problem

 Relational Classification: predicting the 
category of an object based on its 
attributes and its links and attributes of 
linked objects

 Collective Classification: jointly predicting 
the categories for a collection of 
connected, unlabelled objects

Neville & Jensen 00, Taskar , Abbeel & Koller 02, Lu & Getoor 03, 
Neville, Jensen & Galliger 04, Sen & Getoor TR07, Macskassy & 
Provost 07, Gupta, Diwam & Sarawagi 07, Macskassy 07, 
McDowell, Gupta & Aha 07



Example: Linked Bibliographic Data

P2

P4

A1

P3

P1

I1

Objects:
Papers

Authors
Institutions

Papers

P2

P4

P3

P1

Authors

A1

I1

Institutions

Links:
Citation
Co-Citation
Author-of
Author-affiliation

Citation
Co-Citation
Author-of
Author-affiliationLabels:

P4

P2

P3

P1



Feature Construction
 Objects are linked to a set of objects.  To construct 

features from this set of objects, we need feature 
aggregation methods

Kramer, Lavrac & Flach 01, Perlich & Provost 03, 04, 05, Popescul
& Ungar 03, 05, 06, Lu & Getoor 03, Gupta, Diwam & Sarawagi 07



Formulation
 Local Models

 Collection of Local Conditional Models
 Inference Algorithms: 

• Iterative Classification Algorithm (ICA)
• Gibbs Sampling (Gibbs)

 Global Models
 (Pairwise) Markov Random Fields
 Inference Algorithms:

• Loopy Belief Propagation (LBP)
• Mean Field Relaxation Labeling (MF)



ICA: Learning
 label set:           

P5P8

P7

P2 P4

Learn model from fully labeled training set

P9

P6

P3
P1

P10



ICA: Inference (1)

P5

P4
P3

P2

P1

P5

P4
P3

P2

P1

Step 1: Bootstrap using object attributes only



ICA: Inference (2)

P5

P3

P2

P1

P5

P4
P3

P2

P1

Step 2: Iteratively update the category of each object, 
based on linked object’s categories

P4P4



Experimental Evaluation
 Comparison of Collective Classification Algorithms

 Mean Field Relaxation Labeling (MF)
 Iterative Classification Algorithm (ICA)
 Gibbs Sampling (Gibbs)
 Loopy Belief Propagation (LBP)
 Baseline: Content Only

 Datasets
 Real Data

• Bibliographic Data (Cora & Citeseer), WebKB, etc.

 Synthetic Data
• Data generator which can vary the class label correlations 

(homophily), attribute noise, and link density



Results on Real Data

Algorithm Cora CiteSeer WebKB
Content Only 66.51 59.77 62.49

ICA 74.99 62.46 65.99
Gibbs 74.64 62.52 65.64

MF 79.70 62.91 65.65
LBP 82.48 62.64 65.13

Sen, Namata, Bilgic, Getoor, Gallagher, Eliassi-Rad, AI Magazine 07



Effect of Structure

Results clearly indicate that algorithms’ performance 
depends (in non-trivial ways) on structure

Varying link density for homophilic graphs
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Link Prediction 
 The Problem
 Predicting Relations
 Algorithms

 Link Labeling
 Link Ranking
 Link Existence



Links in Data Graph

chris@enron.com liz@enron.comEmail

chris37 lizs22IM

555-450-0981 555-901-8812TXT

Node 1 Node 2

mailto:chris@enron.com�
mailto:liz@enron.com�


⇒ Links in Information Graph

Node 1 Node 2

Manager

Family

Chris Elizabeth

TimSteve
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Putting Everything together….



Graph Identification
 Goal:

 Given an input graph infer a complete and clean
output graph

 Three major components:
 Entity Resolution (ER): Infer the set of nodes
 Collective Classification (CC): Infer the node labels
 Link Prediction (LP): Infer the set of edges

 Problem:  The components are intra and inter-
dependent



Dependencies
 Intra-dependent

• Two nodes more likely to be co-referent if their neighbors are 
co-referent

• Two nodes are more likely to be linked if they link to common 
nodes

• Label of a node depends on the labels of related nodes

 Inter-dependent
• Two nodes are more likely to be co-referent if they have the 

same inferred label
• Two nodes are more likely to be linked depending on their 

inferred labels 
• Label of a node depends on inferred linked nodes



Classifiers
 Base Classifiers 

 Can use any conditional model as base classifier (i.e., logistic 
regression, decision trees, SVMs, naïve Bayes, etc.)

 Local Classifiers – use only local attribute info for a node or edge
 Relational Classifiers – can use info from relational neighborhood



Classifiers
 Base Classifiers 

 Can use any conditional model as base classifier (i.e., logistic 
regression, decision trees, SVMs, naïve Bayes, etc.)

 Local Classifiers – use only local attribute info for a node or edge
 Relational Classifiers – can use info from relational neighborhood

 Collective classifiers
 Use local classifiers to bootstrap classification process
 Iteratively apply relational classifiers 



Classifiers
 Base Classifiers 

 Can use any conditional model as base classifier (i.e., logistic 
regression, decision trees, SVMs, naïve Bayes, etc.)

 Local Classifiers – use only local attribute info for a node or edge
 Relational Classifiers – can use info from relational neighborhood

 Collective classifiers
 Use local classifiers to bootstrap classification process
 Iteratively apply relational classifiers 

 Coupled Classifiers
 Apply the  collective classifiers in order such that collective 

classifiers can use the predictions of earlier classifiers when 
computing relational features

• Pipeline – Apply the components one at a time, in a particular 
sequence

• Coupled Collective Classifiers – Apply components iteratively



Coupled Collective Classification 
(C3) Algorithm

 Focus is on coupling the inference of the three 
components using conditional models

 Conditional models applied in two phases
 Phase 1: Local models using only local features

• Bootstraps the process

 Phase 2: Relational models using intra- and inter-
relational features 

• Infer assignments using local and intra- and inter-relational  
information

 Cyclic dependencies handled by iteratively apply 
relational models



C3 Variants
 Capture more dependencies can also mean 

introducing more channels for error 
propagation

 Variant 1: Confidence-Based Inference
 Some predictions are more confident than others
 Commit more confident predictions earlier

 Variant 2: Stacked Learning (Kou & Cohen 
07)
 Instead of using the true assignments for relational 

features during training, use inferred assignments



Experimental Evaluation
 Datasets:

 Citation Networks
• Citeseer – 3312 paper nodes, 4732 citation edges, 6 possible 

labels
• Cora – 2708 paper nodes, 5428 citation edges, 7 possible 

labels

 Partitioned to three disjoint networks and created 
noisy versions of each; varied amount of noise (Low, 
Medium, High)

 Given noisy network, infer the original network
 Conditional models: linear SVM
 Evaluate average F1 performance over ER, LP, CC



Algorithms
 Baselines:

 LOCAL: apply only the local models
 INTRA: apply relational classifiers using only intra-

relational features
 PIPELINE: apply collective classifiers for each 

component in the pipeline
 C3  Variants:

 C3: the basic algorithm
 C3+C: C3 using confidence based inference
 C3+S: C3 using stacking
 C3+SC: C3 using stacking and confidence based inference

 Gibbs: apply pseudo-Gibbs sampling over the 
conditional models



General Trends: Citeseer
Low Noise Medium Noise High Noise

ER (f1) LP (f1) NL (f1) Avg. ER (f1) LP (f1) NL (f1) Avg. ER (f1) LP (f1) NL (f1) Avg.
LOCAL 0.999 0.853 0.656 0.836 0.993 0.707 0.633 0.778 0.954 0.650 0.602 0.735
INTRA 0.999 0.852 0.660 0.837 0.995 0.706 0.639 0.780 0.956 0.647 0.621 0.741
ELN 0.999 0.906 0.684 0.863 0.995 0.851 0.675 0.840 0.956 0.780 0.634 0.790
ENL 0.999 0.916 0.679 0.865 0.995 0.872 0.665 0.844 0.956 0.808 0.633 0.799
LEN 0.999 0.852 0.678 0.843 0.994 0.706 0.666 0.789 0.953 0.647 0.625 0.742
LNE 0.999 0.852 0.663 0.838 0.994 0.706 0.643 0.781 0.953 0.647 0.608 0.736
NEL 0.999 0.916 0.660 0.858 0.993 0.872 0.639 0.835 0.959 0.812 0.621 0.797
NLE 0.999 0.863 0.660 0.840 0.993 0.754 0.639 0.795 0.955 0.694 0.621 0.757
Gibbs 0.999 0.924 0.676 0.866 0.942 0.891 0.666 0.833 0.613 0.840 0.621 0.691
C3 0.999 0.917 0.683 0.866 0.995 0.870 0.670 0.845 0.959 0.809 0.638 0.802
C3+C 0.999 0.917 0.684 0.867 0.995 0.872 0.667 0.845 0.957 0.810 0.634 0.800
C3+S 0.999 0.917 0.700 0.872 0.996 0.868 0.684 0.849 0.965 0.775 0.651 0.797
C3+SC 0.999 0.918 0.701 0.873 0.995 0.869 0.681 0.848 0.962 0.773 0.654 0.797

 Capturing more dependencies result in improved performance
 C3 algorithm generally the best performing for each task and overall



General Trends: Cora
Low Noise Medium Noise High Noise

ER (f1) LP (f1) NL (f1) Avg. ER (f1) LP (f1) NL (f1) Avg. ER (f1) LP (f1) NL (f1) Avg.
LOCAL 0.983 0.816 0.719 0.839 0.950 0.702 0.682 0.778 0.910 0.483 0.613 0.669
INTRA 0.975 0.812 0.735 0.841 0.938 0.694 0.694 0.775 0.886 0.470 0.657 0.671
ELN 0.975 0.906 0.774 0.885 0.938 0.867 0.722 0.842 0.886 0.762 0.657 0.768
ENL 0.975 0.918 0.765 0.886 0.938 0.882 0.728 0.849 0.886 0.774 0.663 0.774
LEN 0.972 0.812 0.764 0.849 0.932 0.694 0.711 0.779 0.892 0.470 0.632 0.665
LNE 0.974 0.812 0.739 0.842 0.937 0.694 0.674 0.768 0.895 0.470 0.610 0.659
NEL 0.977 0.916 0.735 0.876 0.943 0.881 0.694 0.839 0.897 0.806 0.657 0.787
NLE 0.975 0.837 0.735 0.849 0.942 0.769 0.694 0.802 0.894 0.628 0.657 0.726
Gibbs 0.943 0.932 0.772 0.882 0.742 0.895 0.690 0.776 0.365 0.835 0.620 0.607
C3 0.977 0.919 0.767 0.888 0.943 0.880 0.724 0.849 0.892 0.792 0.663 0.782
C3+C 0.976 0.918 0.772 0.889 0.943 0.882 0.716 0.847 0.894 0.797 0.660 0.784
C3+S 0.984 0.915 0.790 0.896 0.961 0.882 0.767 0.870 0.921 0.809 0.684 0.804
C3+SC 0.983 0.916 0.786 0.895 0.962 0.880 0.759 0.867 0.919 0.802 0.682 0.801

 Capturing more dependencies result in improved performance
 C3 algorithm generally the best performing for each task and overall



Improvements are Significant

LOCA
L

INTRA ELN ENL LEN LNE NEL NLE Gibbs C3 C3+C C3+S C3+SC

LOCAL -- 0 0 0 0 0 0 0 1 0 0 0 0
INTRA 4 -- 0 0 0 0 0 0 1 0 0 0 0
ELN 8 5 -- 1 2 4 3 3 2 0 0 0 0
ENL 7 5 1 -- 4 4 2 2 2 0 0 0 0
LEN 3 2 0 0 -- 1 1 1 1 0 0 0 0
LNE 0 0 0 0 0 -- 0 0 1 0 0 0 0
NEL 5 4 2 0 3 4 -- 0 2 0 0 0 0
NLE 2 2 0 0 1 1 0 -- 1 0 0 0 0
Gibbs 4 4 1 0 3 3 1 3 -- 0 0 1 0
C3 7 5 2 0 4 4 4 3 3 -- 1 0 0
C3+C 5 6 2 0 5 4 2 3 3 0 -- 0 0
C3+S 8 7 4 3 6 6 5 7 6 3 2 -- 0
C3+SC 7 7 2 3 6 7 6 7 4 2 1 0 --

Citeseer

•Performed paired t-test (> 95%) between all algorithms pairs
•C3 significantly outperforms other models in most cases



Improvements are Significant

LOCA
L

INTRA ELN ENL LEN LNE NEL NLE Gibbs C3 C3+C C3+S C3+SC

LOCAL -- 1 0 0 1 1 0 0 1 0 0 0 0
INTRA 1 -- 0 0 0 2 0 0 1 0 0 0 0
ELN 5 4 -- 0 4 7 0 1 3 0 0 0 0
ENL 8 8 0 -- 6 7 4 3 3 0 0 0 1
LEN 3 0 0 0 -- 1 0 0 1 0 0 0 0
LNE 0 0 0 0 1 -- 0 0 1 0 0 0 0
NEL 7 6 0 0 5 7 -- 0 3 0 0 0 0
NLE 3 3 1 1 2 3 0 -- 2 0 0 0 0
Gibbs 5 5 1 1 3 5 2 2 -- 2 1 1 1
C3 7 8 2 1 7 9 3 2 3 -- 0 0 0
C3+C 7 8 2 1 7 8 2 3 4 0 -- 0 0
C3+S 9 8 3 3 8 8 4 5 6 3 1 -- 1
C3+SC 9 8 3 5 8 9 4 5 6 4 1 0 --

Cora

•Performed paired t-test (> 95%) between all algorithms pairs
•C3 significantly outperforms other models in most cases



Summary so far…
 Graph identification is general framework for dealing 

with noisy structured data
 Here, we saw a preliminary approach based on 

collections of local classifiers

 Many open issues….



1. Query-time GI
 Instead of viewing as an off-line knowledge reformulation 

process

 consider as real-time data gathering with 
 varying resource constraints
 ability to reason about value of information
 e.g., what attributes are most useful to acquire?  Which 

relationships?  Which will lead to the greatest reduction in 
ambiguity?

 Query-time Entity Resolution, Bhattacharya & Getoor, Journal 
of Artificial Intelligence Research, 2007

 Active Learning for Networked Data, Bilgic, Mihalkova & 
Getoor, International Conference on Machine Learning, 2010



2. Visual Analytics for GI
 Combining rich statistical inference models with 

visual interfaces that support knowledge discovery 
and understanding

 Because the statistical confidence we may have in 
any of our inferences may be low, it is important to 
be able to have a human in the loop, to understand 
and validate results, and to provide feedback.

 Especially for graph and network data, a well-
chosen visual representation, suited to the inference 
task at hand, can improve the accuracy and 
confidence of user input



Three Tools

D-Dupe

G-View

C-Group



3. GI & Privacy
 Obvious privacy concerns that need to be taken into 

account!!!

 A better theoretical understanding of when graph 
identification is feasible will also help us understand 
what must be done to maintain privacy of graph data

 … Graph Re-Identification: study of anonymization
strategies such that the information graph cannot
be inferred from released data graph



Communication data

Search data Social network data

Disease data

father-of

has hypertension
? Robert Lady

Query 2: 

“myrtle beach golf course job listings”

Query 1:

“how to tell if your wife is cheating on you”

same-user

call

friends

Preserving the Privacy of Sensitive 
Relationships in Graph Data, Zheleva and 
Getoor, PINKDD 07 public profile

private profile

group affiliationfriends

To Join or Not to Join:  the Illusion of Privacy in 
Online Social Networks, Zheleva and Getoor,, 
WWW 2009

Privacy in Social Networks:  A 
Survey, Zheleva and Getoor, book 
chapter in Social Network Data 
Analytics 2010.

Some relevant work



Statistical Relational Learning (SRL)
 Methods that combine expressive knowledge representation 

formalisms such as relational and first-order logic with principled 
probabilistic and statistical approaches to inference and learning

 Hendrik Blockeel, Mark Craven, James Cussens, Bruce D’Ambrosio, Luc De Raedt, Tom 
Dietterich, Pedro Domingos, Saso Dzeroski, Peter Flach, Rob Holte, Manfred Jaeger, David 
Jensen, Kristian Kersting, Heikki Mannila, Andrew McCallum, Tom Mitchell, Ray Mooney, 
Stephen Muggleton, Kevin Murphy, Jen Neville, David Page, Avi Pfeffer, Claudia Perlich, David 
Poole, Foster Provost, Dan Roth, Stuart  Russell, Taisuke Sato, Jude Shavlik, Ben Taskar, Lyle 
Ungar and many others

Dagstuhl April 2007



Conclusion
 Graph Identification 

 can be seen as a process of data cleaning and knowledge 
reformulation

 In the context where we have some relational information that 
tells us about the structure of the graph that helps us to define 
features and statistical information to help us learn which 
reformulations are more promising than others

 While there are important pitfalls to take into account 
(confidence and privacy), there are many potential 
benefits and payoffs



Thanks!
http://www.cs.umd.edu/linqs

Work sponsored by the National Science Foundation, 
KDD program, National Geospatial Agency, Google, Microsoft and Yahoo!

KDD Program
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