

THE ART OF NATHAN SELIKOFF United Ants
Aesthetic Explorations of Algorithmic Space
www.nathanselikoff.com
All images remain copyright ©2009 by Nathan Selikoff or the original Copyright owners

A SOCIETY OF STICKPEOPLE

 REAL-TIME INTERACTIVE SOFTWARE DEMO

BACKGROUND
Logistic map \& Mandlebrot set

BACKGROUND

Logistic map \& Mandlebrot set

BACKGROUND
Logistic map \& Mandlebrot set

BACKGROUND

Pendula

BACKGROUND
Pendula

BACKGROUND
Pendula

BACKGROUND

Lorenz

BACKGROUND

Lorenz

BACKGROUND

Lorenz

AEXPLORATION

Real-time Interactive Software Demo

EXPLORING \& CHARACTERIZING THE SYSTEM
Lyapunov Exponent, Faces of Chaos

EXPLORING \& CHARACTERIZING THE SYSTEM
Lyapunov Exponent, Faces of Chaos

EXPLORING \& CHARACTERIZING THE SYSTEM
Lyapunov Exponent, Faces of Chaos

EXPLORING \& CHARACTERIZING THE SYSTEM
Lyapunov Exponent, Faces of Chaos

EXPLORING \& CHARACTERIZING THE SYSTEM
Lyapunov Exponent, Faces of Chaos

DIGITAL CHRONOPHOTOGRAPHY

A Society of Stickpeople

EXPLORING FORM
Volumetric Rendering Techniques

EXPLORING FORM
Volumetric Rendering Techniques

FILLING SPACE \& QUESTIONING RELATIONSHIPS

FILLING SPACE \& QUESTIONING RELATIONSHIPS

GOING BACKWARDS

GOING BACKWARDS

- Original Equations
- $x^{\prime}=\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)$
- $y^{\prime}=\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)$

GOING BACKWARDS

- Original Equations
- $x^{\prime}=\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)$
- $y^{\prime}=\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)$
- One Recursion
- $x^{\prime}=\sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} b\right)+c^{*} \sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} b\right)$
- $y^{\prime}=\sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} a\right)+d^{*} \sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} a\right)$

GOING BACKWARDS

- Original Equations
- $x^{\prime}=\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)$
- $y^{\prime}=\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)$
- One Recursion
- $x^{\prime}=\sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} b\right)+c^{*} \sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} b\right)$
- $y^{\prime}=\sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} a\right)+d^{*} \sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} a\right)$
- Two Recursions
- $x^{\prime}=\sin \left(\left(\sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} a\right)+d^{*} \sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} a\right)\right)^{*} b\right)$
$+c^{*} \sin \left(\left(\sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} b\right)+c^{*} \sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} b\right)\right)^{*} b\right)$
- $y^{\prime}=\sin \left(\left(\sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} b\right)+c^{*} \sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} b\right)\right)^{*} a\right)$
$+d^{*} \sin \left(\left(\sin \left(\left(\sin \left(y^{*} b\right)+c^{*} \sin \left(x^{*} b\right)\right)^{*} a\right)+d^{*} \sin \left(\left(\sin \left(x^{*} a\right)+d^{*} \sin \left(y^{*} a\right)\right)^{*} a\right)\right)^{*} a\right)$

TEST PATTERN

SOURCES

- http://www.nathanselikoff.com
- http://bugman123.com/Fractals/Fractals.html
- http://www.magnetnerd.com/Neodymium\ Magnets/art.htm
- http://bulbphotography.com/pendulum/gallery.php
- http:/ / math-art.net/2007/12/02/lorenz-attractor-a-3d-render/
- http://www.reinhardkargl.com/iBlog/iBlog2008.html
- http:/ / talklikeaphysicist.com/2008/lorenz-attractor/

