

PROTECT – A Game Theoretic System to Protect the Ports of United States

Milind Tambe, **Bo An**, Eric Shieh, Rong Yang University of Southern California November 9, 2011

Motivation

- Coast Guard mission: Maritime security
- How to allocate limited security resources?
 - Target weights
 - Adversary monitors defenses, exploits patterns
 - Adversary response

PROTECT: Randomized Patrols

Protect for US Coast Guard is being used at the port of Boston (below)

Contributions of PROTECT

Previous security applications

ARMOR: LAX

IRIS: FAMS

GUARDS: TSA

- Key Contributions of PROTECT:
 - 1st time Quantal Response Equilibrium (QRE) used in real world
 - Compact representation of patrol schedules
 - 1st time security application evaluated by Adversarial Perspective Team (APT)
 - 1st time with real data of patrols before/after

Application

PROTECT has been in use at the Port of Boston since April 2011 Being implemented at the Port of New York

Outline

- PROTECT system
- Challenges
- Evaluation
- Future plan

Game Theory: Stackelberg Games

- Security allocation: (i) Target weights; (ii) Opponent reaction
- *Stackelberg*: Security forces commit first
- Optimal security allocation: Weighted random

Adversary

67.30			Target #1	Target #2
	USCG	Target #1	7, -4	-2, 3
		Target #2	-7, 7	4, -3

PROTECT System

- Casts the patrolling problem as a Stackelberg game:
 - Two players
 - Defender actions (Coast Guard): Patrol routes
 - Attacker actions(adversaries, terrorists): Attack targets
 - Payoff matrix using defender & attacker actions
- Objective Compute optimal strategy over patrol routes to defend targets from attack

USC

Example for game matrix formulation

- Patrol # 2794: {1=T, 5=T, 6=T, 8=Q, 9=Q, 8=T, 6=T, 5=T, 1=T}
- Row of game matrix for defender; attacker's matrix opposite
- Columns correspond to target number

	Target Number						
	Patrol Area 1	Patrol Area 2		Patrol Area 3		 Patrol Area 9	
	1	2	3	4	5	6	 21
Patrol #: 2794	72.46	-8.22	-376.54	-54.56	-138.75	-50.83	 578.21

PASAQ output - Probability Distribution of Patrol Areas and Actions

Probability	Patrol: Q = Query, O = Observe, T = Transit
0.05083	[(1:Q), (2:Q), (4:Q), (2:T), (1:T)]
0.05083	[(1:Q), (2:T), (4:Q), (2:Q), (1:T)]
0.05083	[(1:T), (2:Q), (1:Q), (2:T), (4:Q), (2:T), (1:T)]
0.05083	[(1:T), (2:Q), (4:Q), (2:T), (1:Q)]
0.05083	[(1:T), (2:T), (4:Q), (2:T), (1:Q), (2:Q), (1:T)]
0.05083	[(1:T), (2:T), (4:Q), (2:Q), (1:Q)]
0.00221	[(1:Q), (2:Q), (3:Q), (2:T), (4:Q), (2:T), (1:T)]
0.00221	[(1:Q), (2:Q), (4:Q), (2:T), (3:Q), (2:T), (1:T)]
0.00221	[(1:Q), (2:T), (3:Q), (2:Q), (4:Q), (2:T), (1:T)]
0.00221	[(1:Q), (2:T), (3:Q), (2:T), (4:Q), (2:Q), (1:T)]
0.00221	[(1:Q), (2:T), (4:Q), (2:Q), (3:Q), (2:T), (1:T)]
0.00221	[(1:Q), (2:T), (4:Q), (2:T), (3:Q), (2:Q), (1:T)]
0.00221	[(1:T), (2:Q), (1:Q), (2:T), (3:Q), (2:T), (4:Q), (2:T), (1:T)]
0.00221	[(1:T), (2:Q), (1:Q), (2:T), (4:Q), (2:T), (3:Q), (2:T), (1:T)]

Actionable Results: Schedule for 20 days

Day	Hour: 0000 - 2300	Patrol: Q = Query, O = Observe, T = Transit
Day: 1	Hour: 1500	Patrol: [(1:T), (5:T), (6:T), (8:T), (9:Q), (8:Q), (6:T), (5:T), (1:T)]
Day: 2	Hour: 0300	Patrol: [(1:T), (5:T), (6:T), (8:T), (9:T), (8:T), (6:T), (5:T), (1:T), (2:T), (1:T)]
Day: 3	Hour: 1700	Patrol: [(1:T), (2:T), (4:Q), (2:T), (1:Q), (2:Q), (1:T)]
Day: 4	Hour: 1600	Patrol: [(1:T), (2:Q), (4:Q), (2:T), (1:Q)]
Day: 5	Hour: 1800	Patrol: [(1:T), (5:T), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:Q), (1:T)]
Day: 6	Hour: 2300	Patrol: [(1:T), (5:T), (6:T), (8:T), (7:T), (5:T), (1:T), (2:T), (4:Q), (2:Q), (1:T)]
Day: 7	Hour: 0200	Patrol: [(1:T), (2:Q), (4:Q), (2:T), (1:Q)]
Day: 8	Hour: 1400	Patrol: [(1:T), (5:T), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:Q), (1:T)]
Day: 9	Hour: 0600	Patrol: [(1:T), (5:T), (6:T), (8:Q), (9:Q), (8:T), (6:T), (5:T), (1:T)]
Day: 10	Hour: 1900	Patrol: [(1:T), (5:T), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:Q), (1:T)]
Day: 11	Hour: 0600	Patrol: [(1:Q), (2:Q), (4:Q), (2:T), (1:T)]
Day: 12	Hour: 0000	Patrol: [(1:T), (2:T), (3:Q), (2:T), (4:Q), (2:Q), (1:Q)]
Day: 13	Hour: 1500	Patrol: [(1:T), (5:T), (7:T), (8:T), (6:T), (5:T), (1:T), (2:T), (4:Q), (2:Q), (1:T)]
Day: 14	Hour: 0200	Patrol: [(1:T), (2:T), (4:Q), (2:T), (1:Q), (2:Q), (1:T)]
Day: 15	Hour: 1400	Patrol: [(1:T), (5:Q), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:T), (1:T)]
Day: 16	Hour: 0900	Patrol: [(1:Q), (2:Q), (4:Q), (2:T), (1:T)]
Day: 17	Hour: 2000	Patrol: [(1:T), (2:T), (4:Q), (2:T), (1:Q), (2:Q), (1:T)]
Day: 18	Hour: 1300	Patrol: [(1:T), (5:Q), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:T), (1:T)]
Day: 19	Hour: 0700	Patrol: [(1:Q), (2:T), (4:Q), (2:Q), (1:T)]
Day: 20	Hour: 0800	Patrol: [(1:T), (5:Q), (6:T), (8:T), (9:Q), (8:T), (6:T), (5:T), (1:T)]

Outline

- PROTECT system
- Challenges
- Evaluation
- Future plan

Challenges

- Human Adversary
 - Not assume perfectly rational attacker
- Scaling up
 - # of possible schedules exponential
- Modeling CG domain
 - Implementing real world

USC

Human Adversary - QRE

 Game Theory and Human Behavior (IJCAI'11, Yang et al.)

PT = Prospect theory QRE = Quantal Response Equilibrium

QRE Background

- QRE in games (McKelvey et al, 1995; Weizsäcker, 2003; Yang et al, 2011)
- Model human attacker
- Humans choose better actions at higher frequency
- Noise added to decision/strategy

$$q_i = \frac{e^{\lambda U_i^a(x)}}{\sum_{j=1}^n e^{\lambda U_j^a(x)}}$$

- q_i = attacker probability
- **U(x)** = attacker's expected utility for target x
- λ = noise in attacker's strategy

PASAQ

- Piecewise-linear Approximation of optimal Strategy Against Quantal response algorithm(PASAQ)
- PASAQ faster and provides higher quality strategy

$$\max_{x,a} \frac{\sum_{i=1}^{T} e^{\lambda R_i^a} e^{-\lambda (R_i^a - P_i^a) x_i} ((R_i^d - P_i^d) x_i + P_i^d)}{\sum_{i=1}^{T} e^{\lambda R_i^a} e^{-\lambda (R_i^a - P_i^a) x_i}}$$
$$x_i = \sum_{j=1}^{J} a_j A_{ij}, \quad \forall i$$
$$\sum_{j=1}^{J} a_j = 1$$
$$0 \le a_j \le 1, \quad \forall j$$

Scaling Up

- Graph \rightarrow Many paths
- Each vertex/patrol area of path has 3 possible actions
- Example: Path of 5 patrol areas = $3^5 = 243$ patrols
- Two Ideas
 - Remove dominated patrols
 - Combine similar patrols

Remove dominated patrols

- 3 Patrol Areas (1, 2, 3); 2 Defender Actions (A, B)
- Payoff(A) > Payoff(B)

Patrol #	Patrol Schedule		
1	(1,A), (2,A), (3,A), (2,B), (1,B)		
2	(1,B), (2,A), (3,A), (2,B), (1,B)		
3	(1,B), (2,B), (3,A), (2,B), (1,B)		

• Patrols 2&3 - dominated

USC

Combine similar patrols

- Same scenario as previous slide, A>B
- Order of targets/actions not impact payoffs
- Represent all 4 patrols as 1 patrol set:

 $- \{(1,A), (2,A), (3,A)\}$

Patrol #	Patrol Schedule	
1	(1,A), (2,A), (3,A), (2,B), (1,B)	
2	(1,B), (2,A), (3,A), (2,B), (1,A)	
3	(1,B), (2,B), (3,A), (2,A), (1,A)	
4	(1,A), (2,B), (3,A), (2,A), (1,B)	

Comparison Full vs. Compact

Outline

- PROTECT system
- Challenges
- Evaluation
- Future plan

Evaluation

- Simulations in lab
- Expert feedback
- Adversarial team feedback
- Actual before/after data

Utility Analysis

Robustness Analysis – Observation Noise

Robustness Analysis – Execution Noise

Robustness Analysis – Payoff Noise

Evaluation – Expert Feedback

 Commander, First Coast Guard District's Operational Excellence Award for the work on the PROTECT project

Evaluation – APT

- APT conducted a pre- and post-PROTECT assessment
- Incorporate adversary's known intent, capabilities, skills, commitment, resources, and cultural influences
- The effectiveness (in terms of tactical deterrence) increased from the pre- to post-PROTECT observations.

USC

Evaluation – Pre-PROTECT

Day Trend Analysis (pre-PROTECT)

Evaluation – After PROTECT

Day Trend Analysis (PROTECT)

Outline

- PROTECT system
- Challenges
- Evaluation
- Future plan

Future Work

- Move to New York
- Improved understanding of patrols and behavior at patrol areas
- Include additional attack modes (i.e. Boat Bomb, Swimmer/Diver/Underwater Delivery Systems, Attack by Hijacked Vessel, Sabotage)
- Impact of patrols on deterrence
- Incorporate different assets (aerial)
- Impact of coordination/other gov't agencies