Adversarial Risk Analysis: The Somali Pirates Case

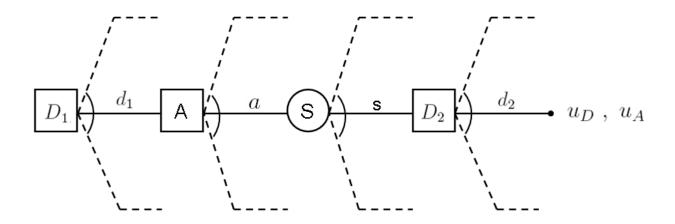
Jesus Rios IBM T.J. Watson Research Centre, USA

and

David Rios Insua, Royal Academy of Sciences, Spain Juan Carlos Sevillano, Complutense University, Spain

Rutgers University

Outline

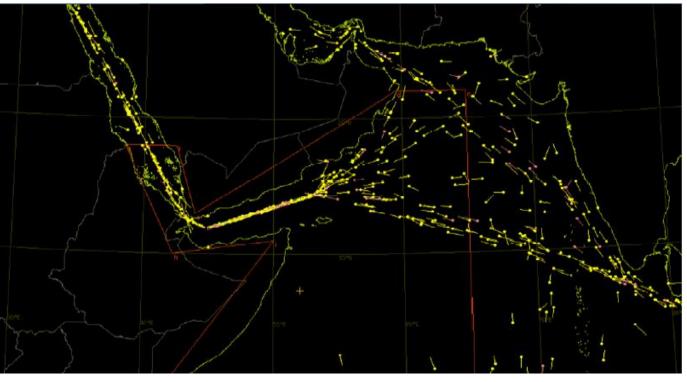

- Adversarial Risk Analysis
- The sequential Defend-Attack-Defend Model
- The Somali Pirates Case
- Discussion

Adversarial Risk Analysis

- A framework to manage risks from actions of intelligent adversaries
- One-sided prescriptive support
 - Use a SEU model
 - Treat the adversary's decision as uncertainties
- New method to predict adversary's actions
 - We assume the adversary is a *expected utility maximizer*
 - Model his decision problem
 - Assess his probabilities and utilities
 - Find his action of maximum expected utility
 - But other *descriptive* models are possible
- Uncertainty in the Attacker's decision stems from
 - *our* uncertainty about his probabilities and utilities

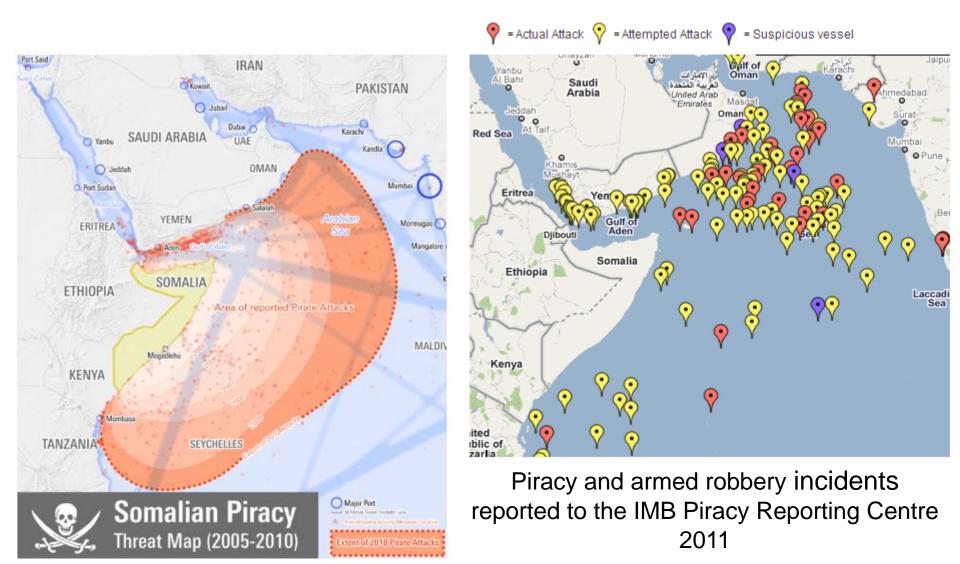
The Defend–Attack–Defend model

- Two intelligent players
 - Defender and Attacker
- Sequential moves
 - First, Defender moves
 - Afterwards, Attacker knowing Defender's move
 - Afterwards, Defender again responding to attack


The Somali Pirates case

- An Illustrative application of the ARA framework
- We support the owner of a Spanish fishing ship managing risks from piracy
- Modeled as a Defend-Attack-Defend decision problem
- Develop predictive models of Pirates' behaviour
 By thinking about their decision problem

Why sail through Somali waters?

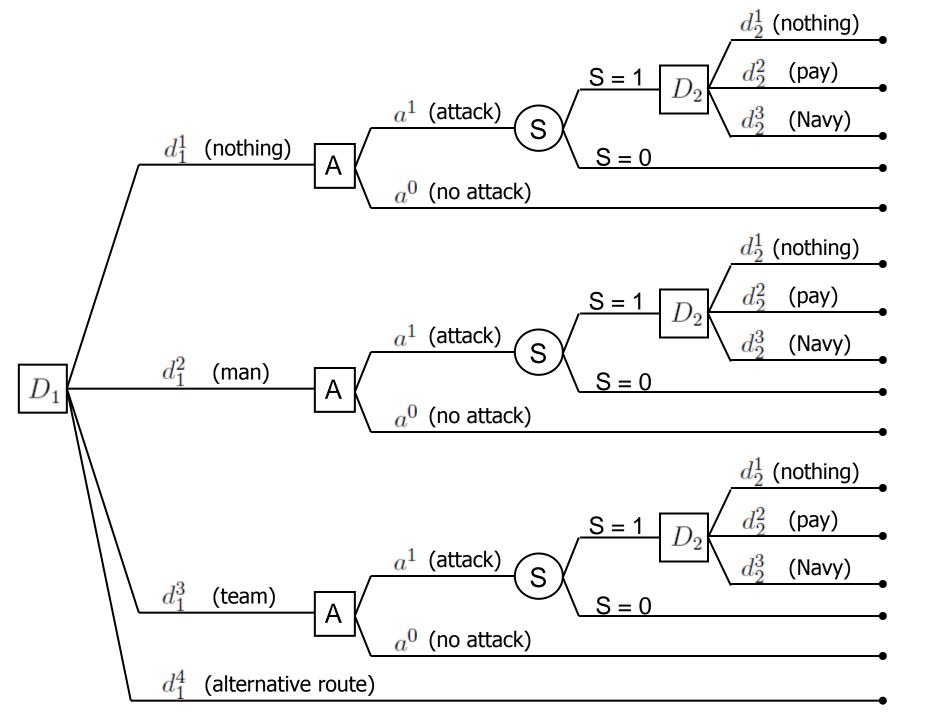


Best route between Europe and Asia

More than 20,000 ships/year passing through the Suez Canal

Increase in piracy acts around the cost of Somalia

Some statistics

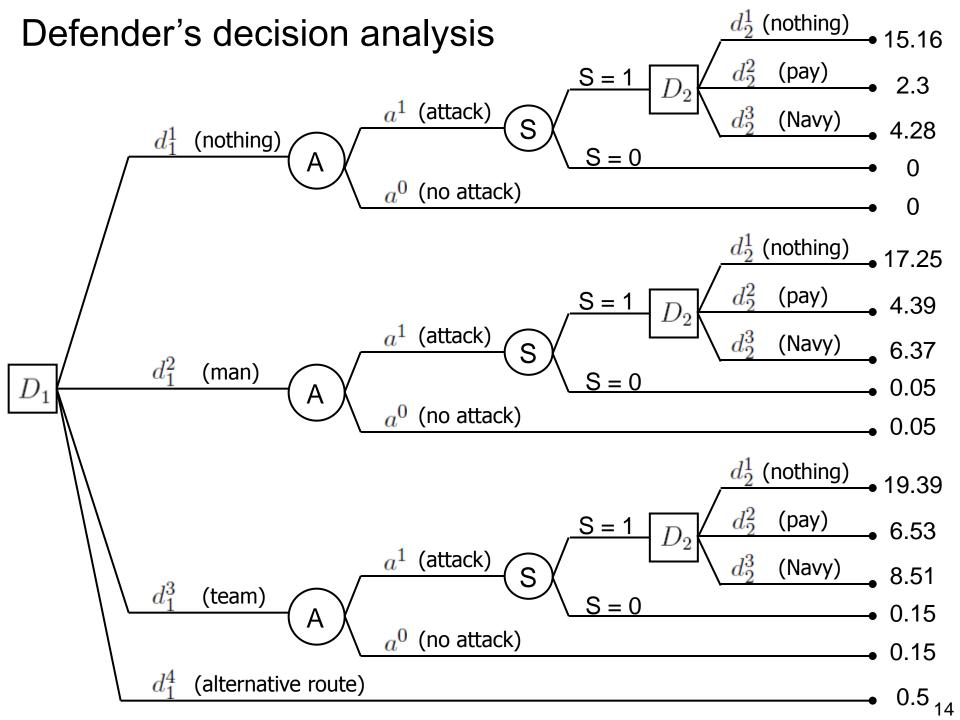

- Piracy and armed robbery incidents in 2011
 - IMB Piracy Reporting Centre (updated on 23 May 2011)
- Worldwide
 - Total Attacks: 211
 - Total Hijackings: 24
- Somalia
 - Total Incidents: 139
 - Total Hijackings:21
 - Total Hostages: 362
 - Total Killed: 7
- Currently
 - Vessels held by Somali pirates: 26
 - Hostages: 522

The Pirates

Problem formulation

- Two players
 - Defender: Ship owner
 - Attacker: Pirates
- Defender first move
 - Do nothing
 - Private protection with an armed person
 - Private protection with a team of two armed persons
 - Go through the Cape of Good Hope avoiding the Somali coast
- Attacker's move
 - Attack or not to attack the Defender's ship
- Defender response to an eventual kidnapping
 - Do nothing
 - Pay the ransom
 - Ask the Navy for support to release the boat and crew

Defender's own preferences and beliefs


- Assessments from the Defender
 - Multi-attribute consequences
 - Preferences over consequences
 - Beliefs about S | d₁, a¹
 - Beliefs about A | d₁
- Defender's relevant consequences
 - Loss of the boat
 - Costs of protecting and responding to an eventual attack
 - Number of deaths on her crew
- Defender's monetary values of
 - a Spanish life: 2.04M Euros
 - the ship: 7M Euros

Defender's own preferences and beliefs

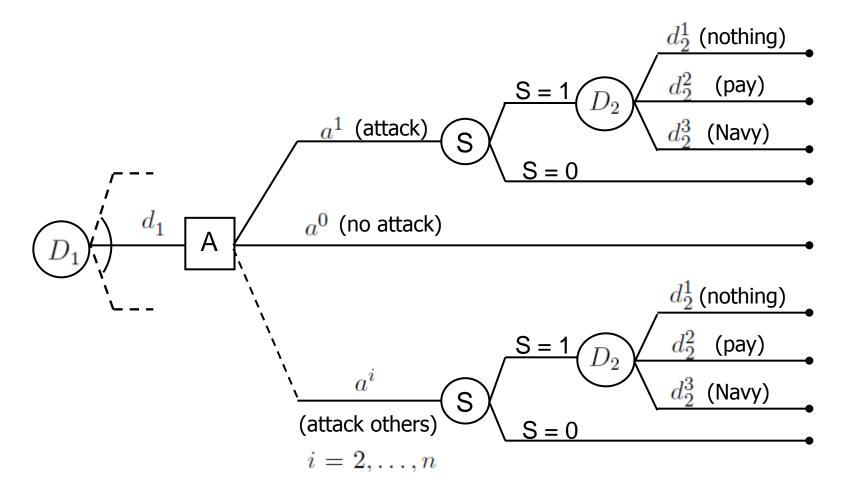
• Consequences of the tree paths for the Defender

D_1	S	D_2	Boat loss	Action costs	Lives lost	Aggregate cost
d_1^1 (nothing)	S = 1	d_2^1 (nothing)	1	0 + 0	0 + 4	15.16
d_1^1 (nothing)	S = 1	d_2^2 (pay)	0	0 + 2.3 M	0 + 0	2.3
d_1^1 (nothing)	S = 1	d_2^3 (army)	0	0 + 0.2M	0 + 2	4.28
d_1^1 (nothing)	S=0		0	0	0	0
d_1^2 (man)	S = 1	d_2^1 (nothing)	1	0.05M + 0	1 + 4	17.25
d_1^2 (man)	S = 1	d_2^2 (pay)	0	$0.05\mathrm{M}+2.3\mathrm{M}$	1 + 0	4.39
d_1^2 (man)	S = 1	d_2^3 (army)	0	$0.05\mathrm{M}+0.2\mathrm{M}$	1 + 2	6.37
d_1^2 (man)	S = 0		0	$0.05 \mathrm{M}$	0	0.05
d_1^3 (team)	S = 1	d_2^1 (nothing)	1	0.15M + 0	2 + 4	19.39
d_1^3 (team)	S = 1	d_2^2 (pay)	0	0.15M + 2.3M	2 + 0	6.53
d_1^3 (team)	S = 1	d_2^3 (army)	0	0.15M + 0.2M	2 + 2	8.51
d_1^3 (team)	S = 0		0	$0.15\mathrm{M}$	0	0.15
d_1^4 (alternative route)			0	0.5 M	0	0.5

Costs in Million Euros

Defender's own preferences and beliefs

- The Defender is constant risk adverse to monetary costs
 - Defender's utility function strategy equivalent to


 $u_D(c_D) = -\exp(c \times c_D)$, with c > 0

- We perform sensitivity analysis on "c"
- Defender's beliefs about S|a¹,d₁

$$p_D(S = 1|a^1, d_1^1) = 0.40$$
$$p_D(S = 1|a^1, d_1^2) = 0.10$$
$$p_D(S = 1|a^1, d_1^3) = 0.05$$

Predicting Attacker's behavior

- The objective is to assess $p_D(A = a^1 | d_1)$
- Attacker's decision problem as seen by the Defender

Defender's beliefs over the Attacker's beliefs and preferences

- Assess from the Defender the Pirates' preferences $U_A(a, s, d_2)$
- Perceived relevant consequences for the Pirates
 - Whether they keep the boat
 - Money earned.
 - Number of Pirates' lives lost.

 $c_A(a, s, d_2)$

							(, , _,
	A	S	D_2	Boat kept	Profit	Lives lost	Aggregate profit
	a^0 (no attack)			0	0	0	0
	a^i (attack)	S = 1	d_2^1 (nothing)	1	-0.03M	0	0.97
	a^i (attack)	S = 1	d_2^2 (pay rescue)	0	$2.27 \mathrm{M}$	0	2.27
	a^i (attack)	S = 1	d_2^3 (Navy sent)	0	-0.03M	5	-1.28
1	a^i (attack)	S = 0		0	-0.03M	2	-0.53

 $i - - \rightarrow i = 1, ..., n$ (no difference in consequences of attacking the Defender's and other boats)

- The Defender thinks the Pirates are increasing constant risk prone for money
 - Pirates' utility function strategically equivalent to $U_A(c_A) = \exp(c \times c_A)$, with $c \sim \mathcal{U}(0, 20)$
- Defender assessment of Pirates' beliefs on

$$- S \mid a, d_{1}$$

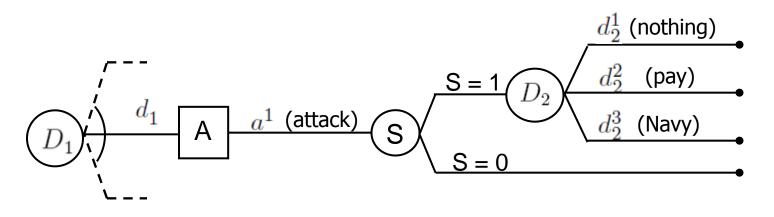
$$P_{A}(S = 1 \mid a^{1}, d_{1}^{1}) \sim \mathcal{B}e(40, 60)$$

$$P_{A}(S = 1 \mid a^{1}, d_{1}^{2}) \sim \mathcal{B}e(10, 90)$$

$$P_{A}(S = 1 \mid a^{1}, d_{1}^{3}) \sim \mathcal{B}e(50, 950)$$

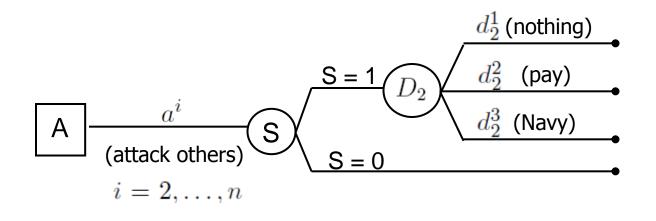
$$P_{A}(S = 1 \mid a^{i}) \sim \mathcal{B}e(1, 1) \text{ for boat } i = 2, \dots, n$$

$$- \mathsf{D}_{2} \mid \mathsf{d}_{1}, \mathsf{a}^{1}, \mathsf{S}=1$$


$$P_{A}(D_{2} \mid d_{1}^{1}, a^{1}, S = 1) \sim Dir(1, 1, 1)$$

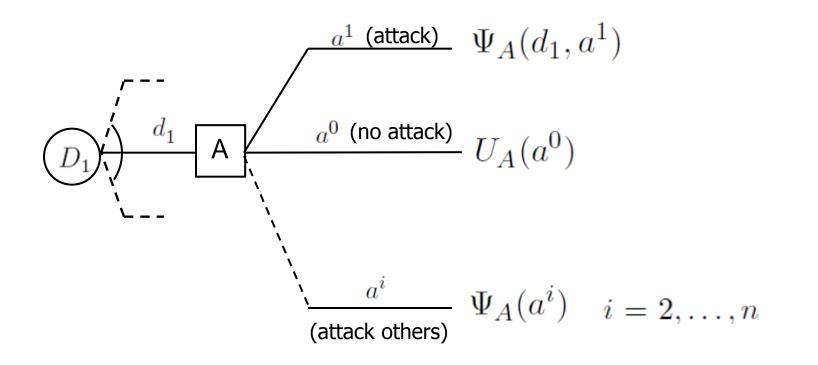
$$P_{A}(D_{2} \mid d_{1}^{2}, a^{1}, S = 1) \sim Dir(0.1, 4, 6)$$

 $P_A(D_2 \mid d_1^3, a^1, S = 1) \sim Dir(0.1, 1, 10)$


- $D_2 | a^i, S=1$ $P_A(D_2 | a^i, S=1) \sim Dir(1, 1, 1) \text{ for } i=2, \dots, n$

- Based on the above assessments, the Defender solve the Pirates' decision problem
- Random Pirates' EU of a¹ given $d_1 \in \mathcal{D}_1 \setminus \{d_1^4\}$

 $\Psi_A(d_1, a^1) = P_A(S = 1 \mid d_1, a^1) \sum_{d_2 \in \mathcal{D}_2} U_A(a^1, S = 1, d_2) P_A(D_2 = d_2 \mid d_1, a^1, S = 1) + P_A(S = 0 \mid d_1, a^1) U_A(a^1, S = 0)$


• Random Pirates' EU of a^i for i = 2, ..., n

$$\Psi_A(a^i) = P_A(S = 1 \mid a^i) \sum_{d_2 \in \mathcal{D}_2} U_A(a^i, S = 1, d_2) P_A(D_2 = d_2 \mid a^i, S = 1) + P_A(S = 0 \mid a^i) U_A(a^i, S = 0)$$

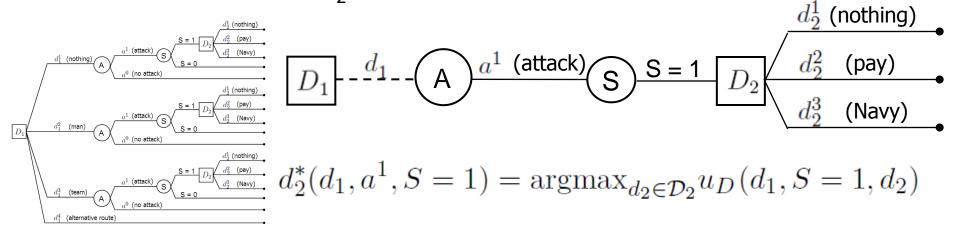
 Defender's predictive probs of being attacked (A = a¹) given d₁ ∈ D₁ \ {d₁⁴}

$$p_D(A = a^1 \mid d_1) = \Pr(\Psi_A(d_1, a^1) > \max\{U_A(a^0), \Psi_A(a^2), \dots, \Psi_A(a^n)\})$$

• We use MC simulation to approximate $p_D(A = a^1 | d_1)$ by

$$\frac{\#\{1 \le k \le N : \psi_A^k(d_1, a^1) > \max\{u_A^k(a^0), \psi_A^k(a^2), \dots, \Psi_A^k(a^n)\}\}}{N}$$

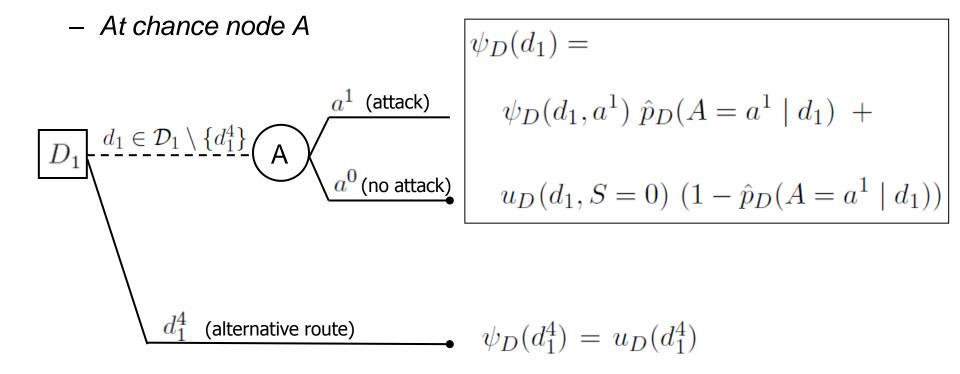
- For illustrative purposes, assume that n = 4
 - There will be 3 boats (of similar characteristics) at the time the Defender's boat sails through the Gulf of Aden
- Based on 1000 MC iterations, we have


$$- \hat{p}_D(A = a^1 \mid d_1^1) = 0.1931$$

$$- \hat{p}_D(A = a^1 \mid d_1^2) = 0.0181$$

$$- \hat{p}_D(A = a^1 \mid d_1^3) = 0.0002$$

Max EU defense strategy


- We solve the Defender's decision problem
 - At decision node D_2

At chance node S

$$\psi_D(d_1, a^1) = p_D(S = 1 \mid d_1, a^1) u_D(d_1, S = 1, d_2^*(d_1, a^1, S = 1)) + p_D(S = 0 \mid d_1, a^1) u_D(d_1, S = 0)$$

Max EU defense strategy

- At decision node D_1
 - $d_1^* = \operatorname{argmax}_{d_1 \in \mathcal{D}_1} \psi_D(d_1)$

Max EU defense strategy

• For different risk aversion coefficients "c"

$$-c = 0.1$$
 and $c = 0.4$

 $d_1^* = d_1^2$ (protect with an armed man) and if kidnapped (S = 1), pay the ransom $(d_2^* = d_2^2)$

$$-c = 2$$

 $d_1^* = d_1^4$ (Going through GH Cape)

Discussion

- ARA vs. GT
- Incorporate more information about $a^i, i = 2, \ldots, n$

$$c_A(a^i, s, d_2)$$
$$P_A(S = 1 \mid a^i)$$

• Incorporate analysis modeling strategic decision behavior of other Defenders $P_A(D_2 \mid a^i, S = 1)$