

Resilience Modeling For Post-Disaster Recovery of Interdependent Systems: Application To Inland Port Disasters

Raghav Pant, Kash Barker, PhD Thomas L. Landers, PhD

Maritime Risk Symposium 2011 Piscataway, New Jersey November 7-9, 2011

Defining Economic Resilience

... an ability exhibited by a system that allows it to recover from a disruptive event in a desired time and with an acceptable cost, noting that resilience is planned for in advance of a disruptive event through preparedness investments and activities...

Industrial Engineering

- How to quantify and build metrics for economic resilience?
- How to use economic resilience planning for decisionmaking guidelines?

The Motivation The Methodology The Application The Conclusions **O** Interdependent Infrastructures

Industrial Engineering

Q Motivation and Application

Motivation: interdependent systems

Incorporation of interdependence in sector planning to provide holistic picture of economic recovery planning from disaster

Application: multi-modal transport

As US traffic congestion increases, growth of inland waterways will only increase (e.g., containerized freight)

Industrial Engineering

The Motivation
The Methodology
The Application
The Conclusions

Q Measuring Disruption Impacts

Consequences of disruption can be expressed in terms of the output and demand loss normalized by the as-planned sector output

```
Inoperability(q) = [Output loss] /[As - planned output]q \in [0,1]Demand perturbation(c^*) = [Exogenous demand loss] /[As - planned output]c^* \in [0, c/x < 1]
```

Industrial Engineering

Q Measuring Dynamic Recovery

Dynamic Inoperability Model, based on the DIIM [Lian and Haimes 2006]

Model evolution depends upon q(0), K^* , A^* , $c^*(k)$

C. Lian and Y.Y. Haimes. Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model. *Systems engineering*, 9(3):241–258, 2006.

Industrial Engineering

Structure of K^{*}

K^{*} represents a sectors willingness to decrease inoperability by investment in inventory and hardening measures during disruptions by maintaining stocks

\mathbf{K}^* is a sparse matrix with structure similar to the BEA capital flow matrix

Industrial Engineering

- Sector robustness is influenced by the initial inoperability and resilience
- *Rapidity* is influenced by the resilience

Knowing the time to equilibrium allows us to adjust model parameters so that the equilibrium is reached

Mathematical Formulation

min $\sum_{k=T}^{N} [\mathbf{z}(k) - \mathbf{q}(k)]^{\mathsf{T}} [\mathbf{z}(k) - \mathbf{q}(k)]$ subject to

 $\mathbf{q}(k+1) = \mathbf{q}(k) + \Delta t \mathbf{K}^* [\mathbf{A}^* \mathbf{q}(k) + \mathbf{c}^*(k) - \mathbf{q}(k)]$

Industrial Engineering

Q Research Contributions

Though the present model is similar in structure to the Dynamic Inoperability Input-Output Model (DIIM) [Lian and Haimes, 2006], it improves on the scope and capability of similar such approaches

Previous studies	Present approach						
Interpretation of resilience (K [*])							
Is a diagonal matrix	Has off-diagonal elements						
Interpretation of initial inoperability (q(0))							
Initial direct impact on sector output	Initial sector response to demand perturbations						

C. Lian and Y.Y. Haimes. Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model. *Systems engineering*, 9(3):241–258, 2006.

Industrial Engineering

The Motivation The Methodology **The Application** The Conclusions

Industrial Engineering University of Oklahoma Case Study: Inland Waterway Port

• 2 million tons of cargo annually

Port Waterway Commerce

Total = \$937 million

Estimated US\$ million annual amount of export-import through Catoosa in 2007*

* Data Sources:

[1] US Army Corps of Engineers, Tulsa Port of Catoosa

[2] US Department of Transportation Research and Innovative Technology Administration

Resilience Modeling for Interdependent Systems, Pant et al.

Industrial Engineering

Q Disruption in Port Commerce

- Closure of the port waterway due to hurricane and floods for 14 days
- Daily loss of export-import is registered as demand losses for industries using the port
- Only source of demand losses for industries across the state
- Maximum daily demand loss of US\$ 3.55 million is suffered across port industries

Industrial Engineering

Q Dynamic Model Behavior

- Rapidity varied from 5 days to 14 days for recovery decisions
- Initial inoperabilities are zero because of localized disruption
- Recovery is complete once stability is achieves

Modeling results for recovery trajectory of port sectors

Resilience Modeling for Interdependent Systems, Pant et al.

Industrial Engineering

Industrial Engineering University of Oklahoma

Planning for Preferred Recovery

Chart showing degree of investment of Primary Metals into other sectors for recovery

T = Time to stability (rapidity)

_0,					Indu	istrial E	ngineering
Resilience For	Port	Sec	tors	Resilie	nce depe	ndence sector	of port for 5 day
Oil and gas extraction			• • • • • • • •	stabiliz	ation from	disrupt	ion
Construction		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	••••••	•••••	•••••
Food and beverage products • • 69.6%				· · · · · · · · ·		· · · · · · · ·	
Textile mills and textile product mills	•••••••••••••••••••••••••••••••••••••••		•				
Wood products · · · · · 🛑 · ·				· · · · · · · ·	🛑	🌑	
Petroleum and coal products	81.2%		· · · · · · · · · · · · ·				· · · · · · · · · · · · ·
Chemical products		55.9%					
Plastics and rubber products.							
Mineral products			• 71.5%				
Primary metals				30.2%	27.3%	28.1%	· · · · · · · · · · ·
Fabricated metal products				🏹			🌰
Machinery •	•••••••••••••••••••••••••••••••••••••••		•				🌰
Electrical equipment		🔶		🌔	🛑		🌰
Motor vehicles, bodies and trailers	•	••••	•	•••••	•		
Other transportation equipment					🛑		🌰
Furniture and related products	•		•				
Miscellaneous manufacturing		🔶		🌰	🛑		🌰
Wholesale trade	•	• • • • • • • •	•				
Retail trade							
Truck transportation	• • • • • • • • • • •		• • • • • • • • •				
Administrative and support services							
Computer systems design and related services	•••••••••••••••••••••••••••••••••••••••		•				
Food and beverage products	Petroleum and coal products	Chemical products	Mineral products	Primary metals	Fabricated metal products	Machinery	Miscellaneous manufacturing

Resilience Modeling for Interdependent Systems, Pant et al.

_

Q Maximum Loss During Recovery

Measure for robustness of economic sectors

Values for sector maximum output losses until recovery in 5 days

Industrial Engineering

Q Total Economic Losses

Industrial Engineering

The Motivation The Methodology The Application The Conclusions

Conclusions

Concepts developed

- Development of interdependent resilience structure for sector recoveries
- Decision based on targeting recovery times
- Dynamic data assimilation and feedback control approach handles vastly complex problem

Case study results and thoughts

- The major sector suffering losses at the port is the primary metals sector (0.51 US\$ maximum daily loss for 5 day recovery)
- Maximum demand losses of 3.50 US\$ million can lead to peak daily output losses of 1.5 US\$ million for port industries if they recover in 5 days
- Sate-wide losses can build up to 60 US\$ million for a 13 day planned recovery
- Disruptions at Catoosa show sectors should increase their own inventory and structural hardening for faster recovery
- Risk planning behavior shown through estimation of interdependent sector resilience
- Estimates of maximum daily loss before recovery and total economic losses can be combined with resilience estimations to get a decision-making metric

U Appreciation

- The U.S. Federal Highway Administration under awards SAFTEA-LU 1934 and SAFTEA-LU 1702
- The National Science Foundation, Division of Civil, Mechanical, and Manufacturing Innovation, under award 0927299

 Thanks to grad students Cameron MacKenzie (current) and Zach Walchuk (former)

Industrial Engineering

End of Presentation

contact: rpant@ou.edu kashbarker@ou.edu

more @ www.ie.ou.edu