
1

Language-Processing Problems

Roland Backhouse

DIMACS, 8th July, 2003



2

Introduction

“Factors” and the “factor matrix” were introduced by Conway
(1971).

He used them very effectively in, for example, constructing
biregulators.

Conway’s discussion is wordy, making it difficult to understand.
There are also occasional errors which are difficult to detect and add
to the confusion. (“The theorem does prevent E from occurring
twice” should read “The theorem does not prevent E from occurring
twice.”)



3

KMP Failure Function (pattern aabaa)

node i 1 2 3 4 5

failure node f(i) 0 1 0 1 2

Factor Graph (language Σ∗aabaa)

b ���� ���� ���� ���� ���� ����
- - - - -a a b a a

0 1 2 3 4 5
��-

ε6

ε
?

ε

6

ε
?

ε6



4

Language Problems

S ::= aSS | ε .

Is-empty

S=φ ≡ ({a}=φ ∨ S=φ ∨ S=φ) ∧ {ε}=φ .

Nullable

ε∈S ≡ (ε∈ {a} ∧ ε∈S ∧ ε∈S) ∨ ε∈ {ε} .

Shortest word length

#S = (#a + #S + #S) ↓ #ε .

Non-Example

aa ∈ S 6≡ (aa∈ {a} ∧ aa∈S ∧ aa∈S) ∨ aa ∈ {ε} .



5

Fusion

Many problems are expressed in the form

evaluate ◦ generate

where generate generates a (possibly infinite) candidate set of
solutions, and evaluate selects a best solution.

Examples:
shortest ◦ path ,

(x∈) ◦ L .

Solution method is to fuse the generation and evaluation processes,
eliminating the need to generate all candidate solutions.



6

Conditions for Fusion

Fusion is made possible when

• evaluate is an adjoint in a Galois connection,

• generate is expressed as a fixed point.

Algorithms for solving resulting fixed point equation include

• brute-force iteration,

• Knuth’s generalisation of Dijkstra’s shortest path algorithm. .

Solution method typically involves generalising the problem.



7

Galois Connections

Suppose A=(A,v) and B=(B,�) are partially ordered sets and
suppose F∈A←B and G∈B←A . Then (F ,G) is a Galois connection
of A and B iff, for all x∈B and y∈A,

F(x) v y ≡ x � G(y) .

Examples

Negation:

¬p⇒q ≡ p⇐¬q .

Ceiling function:

dxe ≤n ≡ x≤n .

Maximum:

x↑y ≤ z ≡ x≤ z ∧ y≤ z .

Even (divisible by two):

if b→2 2 ¬b→1 fi \ m ≡ b⇒ even(m) .



8

Parsing

x∈S ⇒ b ≡ S ⊆ if b → Σ∗ 2 ¬b → Σ∗− {x} fi .

Shortest Word (Path)

Let Σ≥k denote the set of all words over alphabet Σ of length at least
k.

Let #S denote the length of a shortest word in the language S.

#S ≥ k ≡ S ⊆ Σ≥k .

(Most common application is when S is the set of paths from one
node to another in a graph.)



9

Fusion Theorem

F(µ�g) = µvh

provided that

• F is a lower adjoint in a Galois connection of v and � (see brief
summary of definition below)

• F ◦g = h ◦ F .

Galois Connection

F(x) v y ≡ x � G(y) .

F is called the lower adjoint and G the upper adjoint.



10

Language Recognition

Problem: For given word x and grammar G, determine x∈L(G).
That is, implement

(x∈) ◦ L .

Language L(G) is the least fixed point (with respect to the subset
relation) of a monotonic function.

(x∈) is the lower adjoint in a Galois connection of languages (ordered
by the subset relation) and booleans (ordered by implication).
(Recall,

x∈S ⇒ b ≡ S ⊆ if b → Σ∗ 2 ¬b → Σ∗− {x} fi .)



11

Nullable Languages

Problem: For given grammar G, determine ε∈L(G).

(ε∈) ◦ L

Solution: Easily expressed as a fixed point computation.

Works because:

• The function (x∈) is a lower adjoint in a Galois connection (for
all x, but in particular for x= ε).

• For all languages S and T ,

ε∈S·T ≡ ε∈S ∧ ε∈ T .



12

Problem Generalisation

Problem: For given grammar G, determine whether all words in L(G)

have even length. I.e. implement

alleven ◦ L .

The function alleven is a lower adjoint in a Galois connection.
Specifically, for all languages S and T ,

alleven(S)⇐ b ≡ S ⊆ if ¬b → Σ∗ 2 b→ (Σ·Σ)∗ fi .

Nevertheless, fusion doesn’t work (directly) because

• there is no ⊗ such that, for all languages S and T ,

alleven(S·T) ≡ alleven(S) ⊗ alleven(T) .

Solution: Generalise by tupling: compute simultaneously alleven and
allodd.



13

General Context-Free Parsing

Problem: For given grammar G, determine x∈L(G).

(x∈) ◦ L .

Not (in general) expressible as a fixed point computation.

Fusion fails because: for all x, x 6= ε, there is no ⊗ such that, for all
languages S and T ,

x∈S·T ≡ (x∈S) ⊗ (x∈ T) .

CYK: Let F(S) denote the relation 〈i, j:: x[i..j)∈S〉.

Works because:

• The function F is a lower adjoint.

• For all languages S and T ,

F(S·T) = F(S) • F(T)

where B•C denotes the composition of relations B and C.



14

Language Inclusion

Problem: For fixed (regular) language E and varying S, determine

S ⊆ E .

Example: Emptiness test:
S ⊆ φ .

Example: Pattern Matching: given pattern P, for each prefix t of text
T , evaluate:

{t} ⊆ Σ∗ · {P} .

Example: All words are of even length:

S ⊆ (Σ·Σ)∗ .



15

Language Inclusion

Problem: For fixed (regular) language E and varying S, determine

S ⊆ E .

• Function (⊆E) is a lower adjoint. Specifically,

S⊆E⇐ b ≡ S ⊆ if b→E 2 ¬b→Σ∗ fi .

• But, for E 6=φ and E 6=Σ∗, there is no ⊗ such that, for all
languages S and T ,

S·T ⊆ E ≡ (S⊆E) ⊗ (T ⊆E) .

Solution (Oege de Moor): Use factor theory to derive generalisation.



16

Factors

For all languages S, T and U,

S·T ⊆ U ≡ T ⊆ S\U ,

S·T ⊆ U ≡ S ⊆ U/T .

Note:
S\(U/T) = (S\U)/T .

Hence, write
S\U/T .



17

Left and Right Factors

Define the functions / and . by

X/ = E/X ,

X. = X\E .

By definition, the range of / is the set of left factors of E and the
range of . is the set of right factors of E.

We also have the Galois connection:

X⊆Y/ ≡ Y⊆X. .

Hence,

X/./ = X/ ,

X./. = X. ,

E/. = E = E./ .



18

The Factor Matrix

Let L denote the set of left factors of E.

Define the factor matrix of E to be the binary operator \ restricted to
L×L. Thus entries in the matrix take the form L0\L1 where L0 and
L1 are left factors of E.

The factor matrix of E is denoted by [[E]]. It is a reflexive, transitive
matrix.

[[E]] = [[E]]∗ .

The row and column containing individual factors, the left factors,
the right factors, and E itself, is given by:

U\E/V = U./\V/ ,

V/ = E/\V/ ,

U. = U./\E./ ,

E = E/ \ E./ .



19

Using the Factor Matrix

Problem: For fixed regular language E and varying S, determine

S ⊆ E .

Generalisation: For fixed regular language E and varying S,
determine the relation

S ⊆ [[E]] .

(Formally, the relation 〈L,M:: S ⊆ L\M〉 where L and M range over
the left factors of E.)

Works because:

S·T ⊆ [[E]] ≡ (S⊆ [[E]]) • (T ⊆ [[E]]) .

where B•C denotes the composition of relations B and C.



20

Proof

We have to show that

S·T ⊆ U/\W/ ≡ 〈∃V :: S ⊆ U/\V/ ∧ T ⊆ V/\W/〉 .

First,

S·T ⊆E

= { unit of conjunction }

S·T ⊆E ∧ true

= { factors, T/=E/T ; cancellation }

S⊆ T/ ∧ T/ · T ⊆ E

= { factors, T/. = T/\E }

S⊆ T/ ∧ T ⊆ T/. .

Whence:



21

S·T ⊆ U/\W/

= { factors, definition of W/ }

U/ ·S · T ·W ⊆ E

= { above, with S,T := U/ ·S , T ·W }

U/ ·S ⊆ (T ·W)/ ∧ T ·W ⊆ (T ·W)/.

= { factors }

S ⊆ U/\ (T ·W)/ ∧ T ⊆ (T ·W)/./W

= { U./W = U\W/ }

S ⊆ U/\ (T ·W)/ ∧ T ⊆ (T ·W)/\W/ .⇒ { one-point rule }

〈∃V :: S ⊆ U/\V/ ∧ T ⊆ V/\W/〉⇒ { Leibniz }

〈∃V :: S·T ⊆ U/\V/ · V/\W/〉⇒ { cancellation, }

S·T ⊆ U/\W/ .



22

Summary

• Use of fusion as programming method.

• Problem generalisation involves generalising the algebra in
the solution domain.

• Factor theory as basis for language inclusion problems.

Challenges

• Efficient computation of factor matrices.

• Extension to non-regular languages.



23

References

J.H. Conway, “Regular Algebra and Finite Machines”, Chapman and
Hall, London, 1971.

Backhouse, R.C and Carré, B.A. “Regular algebra applied to
path-finding problems”, J. Institute of Mathematics and its
Applications, vol. 15, pp. 161–186, 1975.

Backhouse, R.C. and Lutz, R.K., “Factor graphs, failure functions
and bi-trees”, Automata, Languages and Programming, LNCS 52,
pp. 61–75, 1977.

Roland Backhouse, “Fusion on Languages”, 10th European
Symposium on Programming, LNCS 2028, pp. 107–121, 2001.

O. de Moor, S. Drape, D. Lacey and G. Sittampalam. Incremental
program analysis via language factors.
(www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm)

For related publications on fixed points, Galois connections and
mathematics of program construction, see
www.cs.nott.ac.uk/~rcb/papers


