

e/vieualization/nl Francesc Comellas Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Barcelona comellas@ma4.upc.edu

Degree

Clustering

them?

1 person

504 people

5 people

Erdös number 0 ---

Erdös number 1 ---

Erdös number 13 ---

(MathSciNet Jul 2004)

Erdös number 2 --- 6593 people Erdös number 3 --- 33605 people

Erdös number 4 --- 83642 people

Erdös number 5 --- 87760 people

Erdös number 6 --- 40014 people Erdös number 7 --- 11591 people

Erdös number 8 --- 3146 people

Erdös number 9 --- 819 people

Erdös number 10 --- 244 people Erdös number 11 --- 68 people

Erdös number 12 --- 23 people

ALC: NOT THE OWNER.	4	2- 7494		
	1	N= 268.00	O Jul 2004 nponent)	
		D=23 R= δ=1 Δ=5 C = 0.14	12 D $_{avg} = 7.64$ 09 $\Delta_{avg} = 5.37$	
Some other Erc	dös coautor	s	Richard Rado	18 17
articles with Erdös	5		Jean Louis Nicolas	17
András Sárközy	57		Réla Bollobás	15
András Hajnal	54		Eric Milner	15
Ralph Faudree	45		John L. Selfridge	13
Richard Schelp	38		Harold Davenport	7
Vera Sós	34		Nicolaas G. de Brui	in 6
Alfréd Rényi	32		Ivan Niven	7
Cecil C. Rousseau	32		Mark Kac	5
Pál Turán	30		Noga Alon	4
Endre Szemerédi	29		Saharon Shela	3
Ronald Graham	27		Arthur H. Stone	3
Stephan A. Burr	27		Gabor Szegö	2

Joel Spencer

Ernst Straus

Carl Pomerance 21

Miklos Simonovits 21

Melvyn Nathanson 19

23

20

Erdös did not write a joint paper with his PhD advisor, Leopold Fejér

Frank Harary (257 coautors)

Noga Alon (143 coautors)

Saharon Shela (136)

Ronald Graham (120)

Charles Colbourn (119)

Daniel Kleitman (115)

A. Odlyzko (104)

Theorem of de l
Ivan Niven
Mark Kac
Noga Alon
Saharon Shela
Arthur H. Stone
Gabor Szegö
Alfred Tarski
Frank Harary
Irving Kaplansk
Lee A. Rubel

2

2

2

2

Erdös number

http://www.oakland.edu/enp/

1- 509

Fields me	dala		Alain Connes	1982	France	3
Fields me	aais		William Thurston	1982	USA	3
			Shing-Tung Yau	1982	China	2
			Cines Desalders	1096	Grant Britain	
			Gand Balbings	1086	Great Britain	
			Geru Farcings	1900	Germany	
Lars Ahlfors	1936	Finland	4	1980	USA	3
Jesse Douglas	1936	USA	4 Valdimin Printald	1000	110.00	
Laurent Schwartz	1950	France	4 waidimit brinteid	1990	USSR	
Atle Selberg	1950	Norway	2 vaugnan Jones	1990	New Zealand	-
Kunihiko Kodaira	1954	Japan	- Shigemuri Mori	1990	Japan	3
Tesp-Bierre Serre	1954	France	2 Edward Witten	1990	USA	3
Flaug Roth	1958	Cormany	2			
niuus noch	1050	Gurmany	Pierre-Louis Lions	1994	France	4
Kene Inom	1958	France	⁴ Jean Christophe Yocco	z 1994	France	3
Lars Hormander	1962	sweden	Jean Bourgain	1994	Belgium	2
John Milnor	1962	USA	³ Efim Zelmanov	1994	Russia	3
Michael Atiyah	1966	Great Britain	4			
Paul Cohen	1966	USA	⁵ Richard Borcherds	1998	S Afr/Gt Brtn	2
Alexander Grothendieck	1966	Germany	⁵ William T. Gowers	1998	Great Britain	4
Stephen Smale	1966	USA	⁴ Maxim L. Kontsevich	1998	Russia	4
Alan Baker	1970	Great Britain	² Curtis McMullen	1998	USA	3
Heisuke Hironaka	1970	Japan	4			
Serge Novikov	1970	USSR	3 Wladimir Woewodsky	2002	Dunnin	4
John G. Thompson	1970	USA	3 Laurent Lafforme	2002	France	inf
Enrico Bombieri	1974	Italy	2	2002	runce	
David Mumford	1974	Great Britain	² Andrei Okounkov	2006	USA	3
			Terence Tao	2006	IISA	3
Pierre Deligne	1978	Belgium	3 Wandalin Warner	2006	France	3
Charles Fefferman	1978	USA	2	2008		3
Gregori Margulis	1978	USSR	4			
Daniel Guillen	1978	HEA	3			

Worldwide

Ships to:

Scalability vs Fractality Poisson distribution 1 1227 SWCirculant 5 2 1656 93 3 1060 9 |V|=1000 ∆ =8-13 10 806 401 < h > 4 D = 14 d = 11.111 90 5 252 12 5 6 137 Small World 13 1 7 Scale-free networks 14 0 C = 0.638 46 Power arid 9 27 10 26 $|V|=4491 \delta = 1 \Delta = 19$ 11 11 D = 46 d = 34.5412 5 13 5 **Small World** 14 3 C = 0.0815 0 16 0 A-L. Barabási i R. Albert, 17 0 Emergence of scaling in random networks. 18 1 Science 286, 509-510 (1999) 19 1 Real networks for which we know the topology: Interest on scale-free nets: $P(k) \sim k^{-\gamma}$ Resilience / Survival of the WWW 10 С B NON BIOLOGICAL $\gamma > 2$ www (in) $\gamma = 2.1$ www (out) $\gamma = 2.45$ (x) H actors $\gamma = 2.3$ 10 $\gamma = 3$ 104 citations power grid $\gamma = 4$ 10 10 BIOLOGICAL $\gamma < 2$ 10 yeast protein-protein net $\gamma = 1.5, 1.6, 1.7, 2.5$ E. Coli metabolic net $\gamma = 1.7, 2.2$ $\gamma = 1.4 - 1.7$ $P(k) = k^{-\gamma}$ yeast gene expression net gene functional interaction $\gamma = 1.6$ A: actors N=212.250 k=28.78 y=2.3 B: WWW N=325.729 k=5.46 y=2.67 And when there are But, usual random models give: $P(k) \sim e^{-k}$ C: power grid N= 4.94 k=2.67 $\gamma = 4$ intentionate attacks to the

spectral properties

- · Connectivity and vulnerability (diameter, cut sets, distances between subsets)
- Scalability, expansion (Cheeger constants)
- · Routings (spanning trees)
- · Load balancing
- · Clustering (triangles)
- · Reconstruction (Ipsen & Mikhaliov, 2001)
- · Dynamical aspects (interlacing theorem)

Experimental and simulation results

WWW / Internet eigenvalues

Faloutsos, Faloutsos & Faloutsos, 1999

How to model real networks?

Why appears a power law?

WWW: New documents point to "classic" references

1. Networks grow continously by addition of new

2. Growth is NOT uniform: A new node will join,

Erdös: I would prefer to publish with a well known mathematician

with high probability, an old well connected node

Normalized Laplacian eigenvalues (meshes, random trees)

Vukadinovic, Huang, Erlebach 2002

"Standard" model: Barabási, Albert; Science 286, 509 (1999) Preferential attachment: At each time unit a new node is added with m links which connect to existing nodes. The probability P to connect to a node i is proportional to its degree k_i

Mean Field Theory

Erdös-Rény,

Watts-Strogatz

Barabási-Albert

other models ?

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

Duplication models:

nodes

Fan Chung, Lu, Dewey, Galas; (2002) Nodes are duplicated together with all (or part) of their edges. can produce γ <2 as in biological networks keep some network properties

Fractal networks

Motifs, graphlets

Milo, Shen-Orr, Itzkoviz, Kashtan, Chkovskii, Alon *Science* 298, 824-827 (2002)

Pržulj, Corneil, Jurisica Bioinformatics 20, 3508-3515 (2004)

Song, Havlin, Makse Nature 433, 392-396 (2005) Nature Physics 2, 275-281 (2006) Self-similarity of complex networks Origins of fractality in the growth of complex networks

WWW, protein interaction networks Hierarchical graphs Cliques-trees, as deterministic are fractal Ravasz, Barabasi, models for real networks. Hierarchical organization in complex networks Phys. Rev. E (2003). $C(k) \sim k^{-1}$ Internet (AS) is not fractal Barabási-Albert is not fractal Hierarchical graphs Recursive clique-trees Real complex networks: Apollonian graphs self-organized criticality (SOC) by some optimization process !! $\gamma = 1 + (\ln 5 / \ln 4)$ **Recursive clique-trees** Real-life networks are fractal (Song, Havlin, Makse) but some fractal-looking graphs are not ! F.Comellas, G. Fertin, A. Raspaud, Phys. Rev. E **Recursive clique-trees** Initial graph: K_a -the complete graph with q vertices. Operation: t>=0, obtain K(q,t+1) from K(q,t) by adding SN Dorogovtsev, AV Gotsev, JFF Mendes., Phys. Rev. E (2002) for every clique Kg of K(q, t+1): a: A new vertex u F. Comellas, Guillaume Fertin, André Raspaud, Phys. Rev. E (2004) example q=2 b: q edges joining u with the vertices of this clique K(d.t-1) K(d t) Barrière, Comellas, Dalfó $\ln(d+1)$ $\gamma \approx 1 +$ (2006) $\ln d$ example q=3

And let us not confine our cares To simple circles, planes and spheres, But rise to hyper flats and bends Where kissing multiple appears, In n-ic space the kissing pairs Are hyperspheres, and Truth declares -As n+2 such osculate Each with an n+1 fold mate The square of the sum of all the bends Is n times the sum of their squares.

Thorold Gosset, The Kiss Precise, Nature 139 (1937) 62.

C	Discrete degree spectrum (with larger and larger jumps)
P_{ci}	$\lim_{k \to \infty} k \equiv \sum_{k' \ge k} N(k', t) / N_t \sim k^{1-\gamma}$
	$\gamma \approx 1 + \frac{\ln(d+1)}{\ln d}$
	$2 < \gamma < 2.58496$

Step (t)	New edges	Number of K_{d+}
0	$\frac{d(d+1)}{2}$	1
1	d + 1	d + 1
2	$(d+1)^2$	$(d+1)^2$
3	$(d + 1)^3$	$(d+1)^3$
i	$(d + 1)^{i}$	$(d+1)^{i}$
i+1	$(d+1)^{i+1}$	$(d+1)^{i+1}$
$N_t = (d + 1) -$	$+\sum_{j=0}^{t-1} (d+1)^j = \frac{(d+1)}{d}$	$\frac{t-1}{2} + d + 1$
$E _t = \frac{d(d+1)}{2} +$	$\sum_{i=1}^{t} (d+1)^{i} = \frac{d(d+1)}{2} + \frac{(d-1)}{2} + ($	$(+1)^{t+1} - d - 1 = d$

Random Apollonian graphs

Instead of adding simultaneously a new vertex to each clique (never used before), we add an unique vertex to a random clique.

Initially A(d,0) is K_{d+2}

Step t choose clique K_{d+1} NEVER USED and add a node (and the corresponding edges)

Order increments by 1 at each step $N_t = t+d+2$

Degree distribution (self-averaging)

Given a vertex, when its degree increases by 1, the number of K_{d+1} which contains it increases by d-1. Thus, when the vertex attains degree k_i the number of K_{d+1} is $(d+1)+(k_i - d-1)(d-1)=(d-1) k_i - d^2+d+2$

with initial condition $k_i(t_i) = d + 1$ we obtain

 $k_i(t) = \frac{d^2 - d - 2}{d - 1} + \frac{d + 1}{d - 1} \left(\frac{dt + d + 2}{dt_i + d + 2}\right)^{\frac{d - 1}{d}}$

 $\frac{5}{2} = 2.5$

 $\frac{2d-1}{d}$ (2 to 3)

 $1 + \frac{\ln(d+1)}{\ln d}$ (2 to 2.58)

0.80 to 1

0.74 to 1

Random pseudo fractal scale-free

Determ. recursive clique-trees [22]

Random rec. clique-trees [see Appendix]

Phys.Rev.E 71 (2005) 046141

HD random Apollonian network Zhang, Comellas, Rong

Physica A. cond-mat/0502591

Random recursive clique-tree see Appendix

General case $d = 2 \dots \infty$

cases d=2.3)

(includes

In many simulations choosing an edge might be biased. It is not the same to choose edge e from |E| edges than choose a node and then and adjacent node.

