

Real networks very often are

Large

Small-world
small diameter $\log (|V|)$, large clustering

Scale-free

power law degree distribution ("hubs")
Self-similar / fractal
Deterministic models
Based on cliques
(hierarchical graphs, recursive
clique-trees, Apollonian graphs)

Most "real" networks are
small-world scale-free self-similar

Small diameter (logarithmic) Milgram 1967
High clustering
Watts \&
Strogatz 1998

Power law
(degrees)
Barabási \&
Albert 1999

Fractal Song, Havlin \& Makse 2005,2006

Main parameters (invariants)

Diameter - average distance
Degree
Δ degree.
P(k): Degree distribution
Clustering
Small-world networks them?

6 degrees of separation !
Stanley Milgram (1967)
160 letters Omaha -Nebraska- -> Boston

Small world phenomenon in social networks What a small-world !

Network characteristics

Erdös number

http://www.oakland.edu/enp/

1- 509
2-7494
$\mathrm{N}=268.000$ Jul 200
$\mathrm{D}=23 \mathrm{R}=12 \quad \mathrm{D}$ avg $=7.64$ $\delta=\mathbf{1} \quad \Delta=\mathbf{5 0 9} \quad \Delta_{\text {avg }}=5.37$ C $=0.14$

Real life networks are clustered, large C(p), but have small

Erdös	numbe	504	
Erdös	numb	6593	peo
Erdös	number	33605	
Erdös	number	83642	p
Erdös	numbe	87760	p
Erdös	number	40014	peopl
Erdös	number	11591	peop
Er	numb	3146	peop
Erdös	num	819	p
Erdös	number 10	24	people
Erdös	number 11		people
dös	number 12	23	op

(MathSciNet Jul 2004)

Notable Erdös coathors

Frank Harary (257 coautors)
Noga Alon (143 coautors)
Saharon Shela (136)
Ronald Graham (120)
Charles Colbourn (119)
Daniel Kleitman (115)
A. Odlyzko (104)

Erdös did not write a joint paper with his PhD advisor, Leopold Fejér

Some other Erdös coautor

 articles with ErdösAndrás Sárközy 57 András Hajnal 54 Ralph Faudree Richard Schelp Vera Sós Alfréd Rényi | | |
| :--- | :--- |
| Cecil C. Rousseau | 32 | $\begin{array}{ll}\text { Cecil Curán } & 30 \\ \text { Pál }\end{array}$ Pál Turán Endre Szemerédi 29 Ronald Graham 27 Stephan A. Burr 27 Joel Spencer Carl Pomerance 23 Miklos Simono 21 Ernst Straus Ernst Straus Ernst Straus

Melvyn Nathanson 19

Richard Rado $\begin{array}{ll}\text { Jean Louis Nicolas } & 17\end{array}$ $\begin{array}{ll}\text { Jeanos Pach } & 16\end{array}$ Janos Pach Béla Bollobás Eric Milner John L. Selfridge 15 Harold Davenport $\quad 13$ Nicolaas G. de Bruijn 6 Ivan Niven
Mark Kac
Noga Alon
Saharon Shela Arthur H. Stone Gabor Szegö Alfred Tarski Frank Harary Irving Kaplansky Lee A. Rubel

eb)

Bidding has on

Pál Erdős
(1913-1996)

Scalability vs Fractality

1	1227		7	0	SWCirculant
2	1656		8	5	
3	1060		9	93	$\|\mathrm{V}\|=1000 \Delta=\mathbf{8 - 1 3}$
4	401		10	806	
5	252		112	${ }_{5}^{90}$	$\mathrm{D}=14 \mathrm{~d}=11.1$
6	137		13	1	Small World
7	84 46		14	0	$\mathrm{C}=0.63$
9	27	Power grid			
10	$\begin{array}{ll}0 & 26 \\ 111\end{array}$	$\|\mathrm{V}\|=4491 \quad \delta=1 \Delta=19$			
11	111				
12	25	D = $46 \quad \mathrm{~d}=34.54$			
13	3 5	Small World			
15	50	$\mathrm{C}=0.08$			
16	60	A-L. Barabási i R. Albert, Emergence of scaling in random networks. Science 286, 509-510 (1999)			
17	70				
18	1				
19	1				

$\mathrm{P}(\mathrm{k})=\mathrm{k}^{-\gamma}$
A: actors
B: WWW
$\mathrm{N}=212.250 \quad \mathrm{k}=28.78 \quad \gamma=2.3$
C: power grid
$\mathrm{N}=325.729 \quad \mathrm{k}=5.46 \quad \gamma=2.67$
$\mathrm{N}=4.94 \quad \mathrm{k}=2.67 \quad \gamma=4$

Real networks for which we know the topology:

$$
P(k) \sim k^{-\gamma}
$$

But, usual random models give: $P(k) \sim e^{-k}$

Interest on scale-free nets:
Resilience / Survival of the WWW
Albert, J eong, Barabási Nature 406, 378 (2000)
What happens when nodes fail randomly?

Epidemics spreading / "vaccination"
WWW, social networks
R. Cohen, D. ben-Avraham, S. Havlin:

Efficient immunization of populations and computers
f_{c} threshold
Phys. Rev. Lett. 91, 247901 (2003)
λ power law exponent
"vaccinate" high degree nodes
upper- totally random

Even the Inquisition knew aboutscale-free networks!!

From random "vaccination"

Arnau d'Amaurí 1209. Besièrs Caedite eos.
Bobit enim 用ominus qui sunt cius Kill them all, God will know his own to selection (see figure)

P. Ormerod, A.P. Roach;

The Medieval inquisition: scale-free networks and the suppression of heresy Physica A 339 (2004) 645-652

spectral properties

Connectivity and vulnerability (diameter, cut sets, distances between subsets)
Scalability, expansion (Cheeger constants)
Routings (spanning trees)

- Load balancing

Clustering (triangles)
Reconstruction (Ipsen \& Mikhaliov, 2001)
Dynamical aspects (interlacing theorem)

Experimental and simulation results
WWW / Internet eigenvalues
Faloutsos, Faloutsos \& Faloutsos, 1999

How to model real networks?

Erdös-Rény,
Watts-Strogatz
Barabási-Albert
other models?

Adjacency matrix eigenvalues (Watts \& Strogatz model, Scale-free models)
Farkas, Derenyi, Barabási \& Vicsek Phys. Rev E 2001 Goh, Kahng \& Kim 2001
Fan \& Chen IEEE Circ. Sys. 2002

Normalized Laplacian eigenvalues (meshes, random trees)

Vukadinovic, Huang, Erlebach 2002

Why appears a power law?

1. Networks grow continously by addition of new nodes
2. Growth is NOT uniform: A new node will join, with high probability, an old well connected node

WWW: New documents point to "classic" references Erdös: I would prefer to publish with a well known mathematician
"Standard" model: Barabási, Albert; Science 286, 509 (1999) Preferential attachment : At each time unit a new node is added with m links which connect to existing nodes. The probability P to connect to a node i is proportional to its degree k_{i}

Mean Field Theory

$\frac{\partial k_{i}}{\partial t} \propto \Pi\left(k_{i}\right)=A \frac{k_{i}}{\sum_{j} k_{j}}=\frac{k_{i}}{2 t}$
, with initial condition $k_{i}\left(t_{i}\right)=m$

$P\left(k_{i}(t)<k\right)=P_{t}\left(t_{i}>\frac{m^{2} t}{k^{2}}\right)=1-P_{t}\left(t_{i} \leq \frac{m^{2} t}{k^{2}}\right)=1-\frac{m^{2} t}{k^{2}\left(m_{0}+t\right)}$ $P(k)=\frac{\partial P\left(k_{i}(t)<k\right)}{\partial k}=\frac{2 m^{2} t}{m_{o}+t} \frac{1}{k^{3}} \sim k^{-3} \quad \gamma=\mathbf{3}$

Duplication models:

Fan Chung, Lu, Dewey, Galas; (2002)
Nodes are duplicated together with all (or part) of their
edges. can produce $\gamma<2$ as in biological networks
keep some network properties

Motifs, graphlets

Milo, Shen-Orr, Itzkoviz, Kashtan, Chkovskii, Alon
Science 298, 824-827 (2002)
Pržuli, Corneil, Jurisica Bioinformatics 20, 3508-3515 (2004)

$\left.\left.\left.\left.\left.\left.\left.>_{i}\right\rangle_{2}\right\rangle_{i}\right\rangle_{10}\right\rangle_{11}\right\rangle_{12}\right\rangle_{10}\right\rangle_{0}$

WWW, protein interaction networks

 are fractalInternet (AS) is not fractal

Barabási-Albert is not fractal

Real complex networks: self-organized criticality (SOC) by some optimization process!!

Cliques-trees, as deterministic models for real networks.

Hierarchical graphs
Recursive clique-trees
Apollonian graphs

Recursive clique-trees
F. Comellas, G. Fertin, A. Raspaud, Phys. Rev. E

Initial graph: K_{q}-the complete graph with q vertices
Operation: $\dagger>=0$, obtain $K(q, t+1)$ from $K(q, t)$ by adding for every clique K_{q} of $K(q, t+1)$:
SN Dorogovtsev, AV Gotsev, JFF Mendes., Phys. Rev. E (2002)
F. Comellas, Guillaume Fertin, André Raspaud, Phys. Rev. E (2004)

$$
\gamma \approx 1+\frac{\ln (d+1)}{\ln d}
$$

Recursive equivalent operation

Apollonian graphs

N Coses S

Apollonian packings

And let us not confine our cares
To simple circles, planes and spheres,
But rise to hyper flats and bends Where kissing multiple appears,
In n-ic space the kissing pairs
Are hyperspheres, and Truth declares -
As $n+2$ such osculate
Each with an $n+1$ fold mate
The square of the sum of all the bends
Is n times the sum of their squares.
Thorold Gosset, The Kiss Precise, Nature 139 (1937) 62.

Step (t)	New edges	Number of K_{d+1}
0	$\frac{d(d+1)}{2}$	1
1	$d+1$	$d+1$
2	$(d+1)^{2}$	$(d+1)^{2}$
3	$(d+1)^{3}$	$(d+1)^{3}$
\ldots	$(d+1)^{i}$	\cdots
i	$(d+1)^{i+1}$	$(d+1)^{i}$
$i+1$	\cdots	$(d+1)^{i+1}$
\ldots		\cdots

$$
N_{t}=(d+1)+\sum_{j=0}^{t-1}(d+1)^{j}=\frac{(d+1)^{t}-1}{d}+d+1
$$

$$
|E|_{t}=\frac{d(d+1)}{2}+\sum_{j=1}^{t}(d+1)^{j}=\frac{d(d+1)}{2}+\frac{(d+1)^{t+1}-d-1}{d}
$$

TABLE II: Distribution of vertios and degrees for $A(d, t)$ at
eech step p.

$\frac{\operatorname{Step}(t) \text { Num. vert. }}{0}$	Degree
${ }_{\substack{d+1 \\ d+1}}^{\text {d }}$	${ }_{d+1}^{d}$
$2 \quad d+1$	d+1+
	$(d+1)+(d$
${ }_{\text {d+1 }}^{d+1}$	${ }^{1+1}$
${ }_{1}+1$	(d+1) $d+(d+1)+(d+1)$
	$(d+1)+(d+1)+(d)$
$(d+1)^{2}$	d+1
d+1	$d^{4}+d^{2}+$
	$(d+1) d^{2}+(d+1) d+(d+1)+(d+1)$
${ }_{(d+1)}{ }^{\text {d }}$	${ }_{(0)}^{(d+1) d+(d+1)+(d+1)}$
$(d+1)^{3}$	${ }^{\text {d }}+1$
${ }^{d+1}$	
1	$(d+1) d^{-2-2}+(d+1) d$
${ }^{d+1}$	(1) $d^{c^{-3}+(d+1) d^{-1}}$
${ }^{\text {d }}+1$	
	$(d+1)+(d+1)$
$(d+1)^{-1}$	$d+1$

Random Apollonian graphs

Discrete degree spectrum (with larger and larger jumps)

$P_{\text {cum }}(k) \equiv \sum_{k^{\prime} \geq k} N\left(k^{\prime}, t\right) / N_{t} \sim k^{1-}$

Instead of adding simultaneously a new vertex to each clique (never used before), we add an unique vertex to a random clique.

Initially $A(d, O)$ is K_{d+2}
Step \dagger choose clique K_{d+1} NEVER USED and add a node (and the corresponding edges)

Order increments by 1 at each step

Degree distribution (self-averaging)
Given a vertex, when its degree increases by 1 , the number of $\mathrm{K}_{\mathrm{d}+1}$ which contains it increases by $\mathrm{d}-1$ Thus, when the vertex attains degree k_{i} the number of K_{d+1} is $(d+1)+\left(k_{i}-d-1\right)(d-1)=(d-1) k_{i}$ $d^{2}+d+2$

$$
\frac{\partial k_{i}}{\partial t}=\frac{(d-1) k_{i}-d^{2}+d+2}{d t+d+2}
$$

with initial condition $\mathrm{k}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{d}+1$ we obtain
$k_{i}(t)=\frac{d^{2}-d-2}{d-1}+\frac{d+1}{d-1}\left(\frac{d t+d+2}{d t_{i}+d+2}\right)^{\frac{d-1}{d}}$
$P\left(k_{i}(t)<k\right)=P\left(t_{i}>\frac{(d t+d+2)\left(\frac{d+1}{d-1}\right)^{\frac{d}{d-1}}}{d\left(k-\frac{d-d-2}{d-1}\right)^{\frac{d-1}{d-1}}}-\frac{d+2}{d}\right)$
$P(k)=d(d+1)^{\frac{d}{d-1}}\left((d-1) k-\left(d^{2}-d-2\right)\right)^{\frac{1-2 d}{d-1}}$
If $\mathrm{k} \gg \mathrm{d}$ we have $\mathrm{P}(\mathrm{k}) \sim \mathrm{k}^{-\gamma}$ with $\quad \gamma(d)=\frac{2 d-1}{d-1}$
$\gamma=3$ (for $d=2$, random seq.)
vs $\quad \gamma=2.58496$ ($\mathrm{d}=2$ parallel)

Degree distribution when $N=10000, d=2,3,4,5$
$C(k)=\frac{\frac{d(d+1)}{2}+d(k-d-1)}{\frac{k(k-1)}{2}}=\frac{d(2 k-d-1)}{k(k-1)}$ Clustering $C=\int_{d+1}^{\infty} C(k) P(k) d k=$
$=\int_{d+1}^{\infty} \frac{d^{2}(2 k-d-1)(d+1)^{\frac{d}{d-1}}}{k(k-1)}\left((d-1) k-\left(d^{2}-d-2\right)\right)^{\frac{1+2 d}{d-1}} d k$

| | $C=\frac{46}{3}-36 \ln \frac{3}{2}=0.7366$ |
| :--- | :--- | :--- |
| | $C=18+36 \sqrt{2} \arctan \sqrt{2}+\frac{9}{2} \pi-18 \sqrt{2} \pi=0.8021$ |

Zhongzhi Zhang, Lili Rong, F. Comellas, Guillaume Fertin,
High dimensional Apollonian networks J. Phys. A (2006)

Zhongzhi Zhang, Lili Rong, F. Comellas, High dimensional random Apollonian networks Physica A (2006),

Deterministic recursive clique-trees

	Adding at the same time a vertex to each d-clique with repetition	Adding at the same time a vertex to each d-clique without repetition
$\begin{aligned} & \text { Case } \\ & d=2 \end{aligned}$	Pseudofractal scale-free Dorogotsev, Goltsev, Mendes Phys.Rev.E 65 (2002) 066122	Deterministic SW network Zhang, Rong, Guo Physica A cond-mat/0503637
$\begin{aligned} & \text { Case } \\ & d=3 \end{aligned}$		Apollonian network Phys.Rev. Lett. 94 (2005) 018702 Doye, Massen Phys. Rev, E 71 (2005) 016128.
$\begin{aligned} & \text { General casas) } \\ & \text { (inc) } \\ & \text { chedudes } \\ & \text { cases } d=2,3) \end{aligned}$	Recursive olique-tree Comellas, Fertin, Raspaud Phys.Rev.E 69 (2004) 037104.	

Random recursive clique-trees

	Adding a single vertex to a random clique with repetition	Adding a single vertex to a random clique without repetition
$\begin{aligned} & \text { Case } \\ & d=2 \end{aligned}$		Random SW network Ozik, Hunt, Ott Phys.Rev.E 69 (2004) 02618
$\begin{aligned} & \text { Case } \\ & d=3 \end{aligned}$		Random Apollonian network Zhou, Yan, Wang Phys.Rev.E 71 (2005) 046141
	Random recursive clique-tree see Appendix	HD random Apollonian network Zhang, Comellas, Rong Physica A. cond-mat/0502591

Deterministic vs Random

Graph family	$P(k)$ or γ-exponent	Clustering
Deterministic SW [78]	$2^{-\frac{4}{2}}$	$0.69=\ln 2$
Random SW [77]	$\frac{3}{4}\left(\frac{2}{3}\right)^{-k}$	$0.65\left(=\frac{3}{2} \ln 3-1\right)$
Apollonian [7,34]	$2.58\left(=1+\frac{\ln 3}{\ln 2}\right)$	0.83
Random Apollonian [82]	$\frac{3 N-5}{N} \approx 3$	$0.74\left(=\frac{46}{3}-36 \ln \frac{3}{2}\right)$
High-Dim. Apollonian [81]	$1+\frac{\ln (d+1)}{\ln d}(2$ to 2.58$)$	0.83 to 1
High-Dim. Random Apollonian [80]	$\frac{2 d-1}{d-1} 2$ to 3	0.74 to 1
Pseudo fractal scale-free [29]	$1+\frac{\ln 3}{\ln 2}=2.58$	0.80($=\frac{4}{5}$)
Random pseudo fractal scale-free	$\frac{5}{2}=2.5$	
Determ. recursive clique-trees [22]	$1+\frac{\ln \left(\frac{d+1)}{\operatorname{lnd}}(2 \text { to } 2.58)\right.}{}$	0.80 to
Random rec. clique-trees [see Appendix]	$\frac{2 d-1}{d-1}$ (2 to 3)	0.74 to 1

Why the random approach produces a different distribution
F. Comellas, Hernan D. Rozenfeld, Daniel ben-Avraham Synchronous and asynchronous recursive random scalefree nets
Phys. Rev. E (2005)

In many simulations choosing an edge might be biased
It is not the same to choose edge e from $|E|$ edges than choose node and then and adjacent node.
(a)

(b) $\longrightarrow r^{\circ}$
(c). (d)

Present and future work in SW-SF networks

How to construct a better WWW (new topologies -Akamai)?

How to analyse very large graphs?
-mean field and other statistical methods fractal techniques
spectral theory
new invariants
-this workshop
How to deal with dynamical networks?
New communication protocols

